10.1002/chem.202002746
Chemistry - A European Journal
RESEARCH ARTICLE
112, 5675-5732; d) J. S. Quesnel, B. A. Arndtsen, Pure Appl. Chem.
2013, 85, 377-384; e) X.-F. Wu, X. Fang, L. Wu, R. Jackstell, H.
Neumann, M. Beller, Acc. Chem. Res. 2014, 47, 1041-1053; f) L. Wu, X.
Fang, Q. Liu, R. Jackstell, M. Beller, X.-F. Wu, ACS Catal. 2014, 4, 2977-
2989; g) P. Gautam, B. M. Bhanage, Catal. Sci. Technol. 2015, 5, 4663-
4702; h) Y. Bai, D. C. Davis, M. Dai, J. Org. Chem. 2017, 82, 2319-2328;
i) Y. Li, Y. Hu, X.-F. Wu, Chem. Soc. Rev. 2018, 47, 172-194; j) J. B.
Peng, H.-Q. Geng, X.-F. Wu, Chem 2019, 5, 526-552; k) J.-B. Peng, F.-
P. Wu, X.-F. Wu, Chem. Rev. 2019, 119, 2090-2127.
proven by gas volumetry (Figure 1 A) and in addition cyanuric acid
was confirmed as by-product in our previous contributions.[16a,17b]
[2]
Selected reviews on CO surrogates: a) L. Wu, Q. Liu, R. Jackstell, M.
Beller, Angew. Chem. Int. Ed. 2014, 53, 6310-6320; b) H. Konishim, K.
Manabe, Synlett 2014, 25, 1971-1986; c) S. D. Friis, A. T. Lindhardt, and
T, Skrydstrup, Acc. Chem. Res. 2016, 49, 594-605; d) J. Cao, Z.-J.
Zheng, Z. Xu, L.-W. Xu, Coord. Chem. Rev. 2017, 336, 43-53; e) D. U.
Nielsen, K. T. Neumann, A. T. Lindhardt, T. Skrydstrup, J. Label. Compd.
Radiopharm. 2018, 61, 949-987; f) D. U. Nielsen, K. T. Neumann, T.
Skrydstrup, Chimia 2018, 72, 606-609; g) H. Konishi, Chem. Pharm. Bull.
2018, 66, 1-19; h) K. Mondal, P. Halder, G. Gopalan, P. Sasikumar, K.
V. Radhakrishnan, P. Das, Org. Biomol. Chem. 2019, 17, 5212-5222; i)
L. Åkerbladh L. R. Odell, M. Larhed, Synlett 2019, 30, 141-155.
Review on ex situ gas generation: a) J. Demaerel, C. Veryser, W. M. De
Borggraeve, React. Chem. Eng. 2020, doi: 10.1039/C9RE00497A; for
examples not concerning CO see: b) A. Modvig, T. L. Andersen, R. H.
Taaning, A. T. Lindhardt, T. Skrydstrup, J. Org. Chem. 2014, 79, 5861-
5868; c) S. K. Kristensen, E. Z. Eikeland, E. Taarning, A. T. Lindhardt, T.
Skrydstrup, Chem. Sci. 2017, 8, 8094-8105; d) S. K. Kristensen, S. L. R.
Laursen, E. Taarning, T. Skrydstrup, Angew. Chem. Int. Ed. 2018, 57,
13887-13891.
Scheme 5. Proposed mechanism.
Conclusion
[3]
The first organocatalytic method for the ex situ formation of CO
from non-derivatized formic acid has been presented. Formamide
catalysis enabled the transformation into CO by means of
substoichiometric amounts of the bulk chemical TCT. As an
important aspect, utilization of DMF as solvent and catalyst
facilitates
a rapid CO generation at room temperature.
Implementation to four different carbonylative cross couplings,
which also includes a carbonylative Sonogashira reaction at room
temperature with challenging electron poor aryl iodides, proved
high synthetic value. High levels of practical relevance were
certified by the synthesis of the bioactive compounds, namely
DEET and Moclobemide.
[4]
a) P. Hermange, A. T. Lindhardt, R. H. Taaning, K. Bjerglund, D. Lupp,
T. Skrydstrup, J. Am. Chem. Soc. 2011, 133, 6061-6071; b) S. D. Friis,
R. H. Taaning, A. T. Lindhardt, T. Skrydstrup, J. Am. Chem. Soc. 2011,
133, 18114-18117; c) H. P. Collin, W. J. Reis, D. U. Nielsen, A. T.
Lindhardt, M. S. Valle, R. P. Freitas, T. Skrydstrup, Org. Lett. 2019, 21,
5775-5778; commercial gas reactors (COWare) are available at Sytracks
In addition, isotopically labeled molecules like the drug
Moclobemide are amenable using commercial 13C-enriched
formic acid. Although HCl is generated simultaneously, even very
acid sensitive functional groups are fully compatible. In order to
exchange gaseous CO or other CO surrogates through the
current methodology, the amount of base simply has to be
adapted according to the amount of formic acid. Finally,
comparison experiments witnessed that the present approach is
superior to other common carboxylic acid activation procedures.
We are convinced that the high levels of synthetic utility and
versatility and the low costs associated will pave the way for a
rapid uptake of the current approach. Current efforts are
dedicated towards the exploitation of CO and HCl for product
incorporation.
[5]
[6]
a) T. Ueda, H. Konishi, K. Manabe, Angew. Chem. Int. Ed. 2013, 52,
8611-8615; b) P. H. Gehrtz, V. Hirschbeck, I. Fleischer, Chem. Commun.
2015, 51, 12574-12577; c) V. Hirschbeck, P. H. Gehrtz, I. Fleischer, J.
Am. Chem. Soc. 2016, 138, 16794-16799.
a) T. Ueda, H. Konishi, K. Manabe, Org. Lett. 2012, 14, 3100-3103; b) T.
Ueda, H. Konishi, K. Manabe, Org. Lett. 2012, 14, 5370-5373; c) H. Li,
H. Neumann, M. Beller, X.-F. Wu, Angew. Chem. Int. Ed. 2014, 53, 3183-
3186; d) H. Konishi, M. Matsubara, K. Mori, T. Tokiwa, S. Arulmozhiraja,
Y. Yamamoto, Y. Ishikawa, H. Hashimoto, T. Shigeta, H. Tokiwa, K.
Manabe, Adv. Synth. Catal. 2017, 359, 3592-3601.
[7]
[8]
[9]
a) N.-F. K. Kaiser, A. Hallberg, M. Larhed, J. Comb. Chem. 2002, 4, 109-
111; b) J. Wannberg, M. Larhed, J. Org. Chem. 2003, 68, 5750-5753; c)
P. Nordeman, L. R. Odell, M. Larhed, J. Org. Chem. 2012, 77, 11393-
11398; c) M. Schacht, D. Mohammadi, N. Schützenmeister, Eur. J. Org.
Chem. 2019, 2587-2591.
a) J.-P. Simonato, T. Walter, P. Métivier, J. Mol. Catal. A 2001, 171, 91-
94; b) J.-P. Simonato, J. Mol. Catal. A 2003, 197, 61-64; c) S. Korsager,
R. H. Taaning, T. Skrydstrup, J. Am. Chem. Soc. 2013, 135, 2891-2894;
d) R. Sang, P. Kucmierczyk, K. Dong, R. Franke, H. Neumann, R.
Jackstell, M. Beller, J. Am. Chem. Soc. 2018, 140, 5217−5223.
a) J. Hou, J.-H. Xie, Q.-L. Zhou, Angew. Chem. Int. Ed. 2015, 54, 6302-
6305; b) Y. Wang, W. Rena Y. Shi, Org. Biomol. Chem. 2015, 13, 8416-
8419; c) M.-C. Fu, R. Shang, W.-M. Cheng, Y. Fu, ACS Catal. 2016, 6,
2501-2505; d) J. Hou, M.-L. Yuan, J.-H. Xiea, Q.-L. Zhou, Green Chem.
2016, 18, 2981–2984; e) Y. Wang, Y. Zeng, B. Yanga, X. Shi, Org. Chem.
Front. 2016, 3, 1131-1136; f) W. Liu, W. Ren, J. Li, Y. Shi, W. Chang, Y.
Shi, Org. Lett. 2017, 19, 1748−1751; g) J. Jiang, M. Fu, C. Li, R. Shang,
Y. Fu, Organometallics 2017, 36, 2818-2825; h) F.-P. Wu, J.-B. Peng, X.
Qi, X.-F. Wu, J. Org. Chem. 2017, 82, 9710-9714.
Acknowledgements
We want to thank the German research foundation (DFG) and the
Fonds of the Chemical Industry (Liebig fellowship for P. H.) for
generous support. In addition, we would like to thank Rudolf
Thomes for measuring HR-MS.
Keywords: carbon monoxide • C1 building blocks •
carbonylation • homogenous catalysis • CO surrogates •
organocatalysis
[10] a) X. Qi, L.-B. Jiang, C.-L. Li, R. Li, X.-F. Wu, Chem. Asian J. 2015, 10,
1870-1873; b) X. Qi, L.-B. Jiang, H.-P. Li, X.-F. Wu, Chem. Eur. J. 2015,
21, 17650-17656; c) X. Qi, C.-L. Li, X.-F. Wu, Chem. Eur. J. 2016, 22,
5835-5838; d) X. Qi, H.-P. Li, X.-F. Wu, Chem. Asian J. 2016, 11, 2453-
2457; e) X. Qi, C.-L. Li, L.-B. Jiang, W.-Q. Zhang, X.-F. Wu, Catal. Sci.
[1]
Selected reviews on carbonylations: a) I. Ojima, Chem. Rev. 1988, 88,
1011-1030; b) A. Brennführer, H. Neumann, M. Beller, ChemCatChem
2009, 1, 28-41; c) R. Franke, D. Selent, A. Bꢀrner, Chem. Rev. 2012,
5
This article is protected by copyright. All rights reserved.