LETTER
Synthesis of Phosphonamidate Ester Modified Nucleic Acid
to warm room temperature and stirred for 18 h before
471
The introduction of an N-methyl residue into this modifi-
cation was discovered to have no pronounced effect upon
duplex stability. Further investigations with this potential-
ly interesting phosphonamidate modification 20B, includ-
ing determination of the phosphorus stereochemistry, are
reported in the following letter.21
quenching by the addition of methanol (10 ml). Removal of
volatiles followed by further addition of methanol (10 ml) and
evaporation yielded a crude mixture of trimethylsilylated
phosphonamidate dimers. Cleavage of the trimethylsilyl
residues was achieved after refluxing the crude product for 5
h in chloroform (15 ml) and methanol (5 ml). Removal of
volatiles followed by flash column chromatography on silica
gel, eluting with a gradient from 2% to 10% ethanol in
chloroform, yielded the phosphonamidate dimer 16 as a
viscous clear colourless oil (686 mg, 87%): 31P NMR (CDCl3,
162 MHz) 32.3, 31.6 ppm.
Acknowledgement
We would like to acknowledge and thank Dr. U. Pieles and Dr. F.
Natt for oligonucleotide synthesis as well as Dr. S. M. Freier (Isis
Pharmaceuticals) for performing hybridisation experiments.
(14) Flash column chromatography was performed using Merck
Silica Gel 60 (0.040-0.063mm). First eluting diastereoisomer
assigned A, second eluting diastereoisomer assigned B. NMR
spectra were recorded with a Bruker AC400 or Bruker
DRX500 instrument. 31P NMR shifts are given as ppm values
relative to phosphoric acid.
References and Notes
(1) New address: Novartis Horsham Research Centre,
Wimblehurst Road, Horsham, West Sussex, RH12 5AB, UK.
(2) Wahlestedt, C.; Good, L. Curr. Opin. in Drug Discov. Dev.
1999, 2, 142. Bennett, C. F. Exp. Opin. Invest. Drugs 1999, 8,
237. Ma, D. D. F.; Rede, T.; Naqvi, N. A.; Cook, P. D.
Biotechnol. Annu. Rev. 2000, 5, 155.
(3) Uhlmann, E.; Peyman, A. Chem Rev. 1990, 90, 544.Crooke, S.
T.; Lebleu, B.; Antisense Research and Applications; CRC
Press: Boca Raton, 1993. Matteucci, M. D.; Martin, J. C. J.
Med. Chem. 1993, 36, 1923. Crooke, S. T. Med. Res. Rev.
1996, 16, 319. Freier, S. M.; Altmann, K-H. Nucleic Acids
Res. 1997, 25, 4429. Uhlmann, E. Curr. Opin. in Drug Discov.
Dev. 2000, 3, 203.
(4) Collingwood, S. P.; Baxter, A. D. Synlett 1995, 703.
Collingwood, S. P.; Taylor, R. J. Synlett 1998, 283.
(5) Collingwood, S. P.; Douglas, M. E.; Natt, F.; Pieles, U.
Phosphorus, Sulphur and Silicon 1999, 144-146, 645.
(6) Gryaznov, S.; Chen, J. K. J. Am. Chem. Soc. 1994, 116, 3143.
Chen, J-K.; Schultz, R. G.; Lloyd, D. H.; Gryaznov, S. M.
Nucleic Acid Research 1995, 23, 2661. Gryaznov, S. M.;
Lloyd, D. H.; Chen, J-K.; Schultz, R. G.; DeDionisio, L. A.:
Ratmeyer, L.; Wilson, W. D. Proc. Natl. Acad. Sci. USA 1995,
92, 5798. Gryaznov, S.; Skorski, T.; Cucco, C.; Nieborowska-
Skorska, M.; Chiu, C. Y.; Lloyd, D.; Chen, J-K.;
Koziolkiewicz, M.; Calabretta, B. Nucleic Acids Research
1996, 24, 1508. McCurdy, S. N.; Nelson, S. N.; Hirschbein, B.
L.; Fearon, K. L. Tetrahedron Lett. 1997, 38, 207. Tereshkov,
S.; Gryaznov, S.; Egli, M. J. Am. Chem. Soc. 1998, 120, 269.
(7) Kers, I.; Bollmark, M.; Kraszewski, A.; Stawinski, J.
Phosphorus, Sulfur and Silicon 1999, 144-146, 637.
(8) Lebedev, A. V.; Wickstrom, E. Perspectives in Drug
Discovery and Design 1996, 4, 17.
15A; 31P NMR (CDCl3, 202 MHz) 35.44 ppm; 1H (CDCl3,
400 MHz) 10.16 (s, 1H), 8.96 (s, 1H), 7.65-7.58 (m, 4H),
7.52 (s, 1H), 7.44-7.18 (m, 15H), 6.94 (s, 1H), 6.81 (d, 4H,
J = 9 Hz), 6.54 (t, 1H, J = 7 Hz), 6.22 (t, 1H, J = 7 Hz), 5.78-
5.67 (m, 1H), 5.18-5.03 (m, 2H), 4.80-4.69 (m, 1H), 4.40-4.34
(m, 1H), 4.25-4.14 (m, 1H), 4.10-4.05 (m, 1H), 3.96-3.90 (m,
1H), 3.87-3.70 (m, 2H), 3.75 (s, 6H), 3.44 (dd, 1H, J = 2 and
11 Hz), 3.24 (dd, 1H, J = 2 and 11 Hz), 2.38-2.21 (m, 2H),
2.18-2.10 (m, 1H), 2.02-1.89 (m, 1H), 1.81 (s, 3H), 1.74-1.39
(m, 3H), 1.49 (s, 3H), 1.05 (s, 9H).
15B; 31P NMR (CDCl3, 202 MHz) 35.89 ppm; 1H (CDCl3,
400 MHz) 10.23 (s, 1H), 8.99 (s, 1H), 7.63-7.57 (m, 4H),
7.47 (s, 1H), 7.44-7.17 (m, 15H), 6.83 (s, 1H), 6.80 (d, 4H,
J = 9 Hz), 6.49 (t, 1H, J = 7 Hz), 6.14 (t, 1H, J = 7 Hz), 5.92-
5.80 (m, 1H), 5.31-5.14 (m, 2H), 4.80-4.71 (m, 1H), 4.44-4.34
(m, 1H), 4.31-4.22 (m, 1H), 4.07-4.00 (m, 1H), 3.91-3.82 (m,
2H), 3.76 (s, 6H), 3.74-3.66 (s, 1H), 3.38 (d, 1H, J = 10 Hz),
3.22 (d, 1H, J = 10 Hz), 2.35-2.25 (m, 1H), 2.23-2.10 (m, 2H),
1.99-1.89 (m, 1H), 1.77 (s, 3H), 1.71-1.42 (m, 3H), 1.49 (s,
3H), 1.06 (s, 9H).
19A; 31P NMR (CDCl3, 162 MHz) 33.33 ppm; 1H (CDCl3,
400 MHz) 7.64 (s, 1H), 7.40 (d, 2H, J = 7 Hz), 7.32-7.24 (m,
9H), 7.23-7.16 (m, 1H), 7.09 (s, 1H), 6.84-6.77 (m, 4H), 6.04-
5.97 (m, 2H), 4.44-4.37 (m, 1H), 4.10-3.72 (m, 3H), 3.76 (s,
6H), 3.52 (d, 1H, J = 12 Hz), 3.30-3.07 (m, 3H), 2.79-2.53 (m,
3H), 2.37-2.19 (m, 3H), 1.92-1.77 (m, 1H), 1.84 (s, 3H), 1.68-
1.54 (m, 1H), 1.45 (s, 3H), 1.26-1.18 (m, 3H).
19B; 31P NMR (CDCl3, 162 MHz) 33.26 ppm; 1H (CDCl3,
500 MHz) 7.56 (s, 1H), 7.35 (d, 2H, J = 7 Hz), 7.28-7.08 (m,
11H), 6.75 (dd, 4H, J = 1 and 7 Hz), 5.98-5.86 (m, 2H), 4.46-
4.30 (m, 1H), 3.99-3.80 (m, 3H), 3.72 (s, 6H), 3.40 (d, 1H,
J = 12 Hz), 3.27-3.09 (m, 3H), 2.89-2.80 (m, 1H), 2.77-2.66
(m, 1H), 2.61-2.54 (m, 1H), 2.36-2.15 (m, 3H), 1.87-1.75 (m,
4H), 1.63-1.51 (m, 1H), 1.42 (s, 3H), 1.16 (t, 3H, J = 7 Hz).
23A; 31P NMR (CDCl3, 162 MHz) 34.18 ppm; 1H (CDCl3,
400 MHz) 7.86 (s, 1H), 7.68-7.55 (m, 8H), 7.44-7.18 (m,
23H), 6.55-6.49 (m, 1H), 6.16 (t, 1H, J = 7Hz), 5.51-5.42 (m,
4H), 4.71-4.64 (m, 4H), 4.07-3.91 (m, 3H), 3.83-3.78 (m, 1H),
3.75-3.70 (m, 1H), 3.39 (d, 3H, J = 17 Hz), 3.19-3.09 (m, 1H),
2.68-2.55 (m, 1H), 2.40-2.27 (m, 1H), 2.30 (d, 3H, J = 14 Hz),
2.25-2.16 (m, 1H), 2.12-2.02 (m, 1H), 1.89 (s, 3H), 1.76-1.57
(m, 4H), 1.61 (s, 3H), 1.08 (s, 9H), 1.05 (s, 9H).
(9) Letsinger, R. L.; Heavner, G. A. Tetrahedron Lett. 1975, 147.
Hata, T.; Yamamoto, I; Sekine, M. Chem. Lett. 1976, 601.
(10) 5’-O-dimethoxytrityl-3’-azido-3’-deoxythymidine 6 Mag,
M.; Schmidt, R.; Engels, J. W. Tetrahedron Lett. 1992, 48,
7319. 3’-O-tert.butyldiphenylsilyl-5’-azido-5’-
deoxythymidine 7 Prepared from 3’-O-
tert.butyldiphenylsilyl-5'-iodo-5'-deoxythymidine (Haung, J.;
McElroy, E. B.; Widlanski, T. S. J. Org. Chem. 1994, 59,
3520.) following treatment with sodium azide (5 equivalents)
in DMF at 85 °C for 5 h (95%).
(11) Baylis, E. K. Tetrahedron Lett. 1995, 36, 9385.
(12) Sanghvi, Y. S.; Ross, B.; Bharadwaj, R.; Vasseur, J-J.
Tetrahedron Lett. 1994, 35, 4697. Sanghvi, Y. S.; Bharadwaj,
R.; Debart, F.; De Mesmaeker, A. Synthesis 1994, 1163.
(13) Typical procedure; Bis(trimethylsilyl)trifluoroacetamide
(1.00 ml, 3.76 mmol) was added dropwise to a solution of the
H-phosphinate 4 (430 mg, 753 mol) and azide 7 (404 mg,
791 mol) in anhydrous pyridine (7.5 ml) at 0 ºC. Upon
completion of the addition the reaction mixture was allowed
23B; 31P NMR (CDCl3, 162 MHz) 35.50 ppm; 1H (CDCl3,
400 MHz) 7.68-7.56 (m, 9H), 7.46-7.17 (m, 23H), 6.52-6.45
(m, 1H), 6.04-5.99 (m, 1H), 5.50-5.39 (m, 4H), 4.72-4.65 (m,
4H), 4.07-3.92 (m, 3H), 3.74-3.63 (m, 2H), 3.40 (d, 3H, J = 17
Hz), 3.35-3.24 (m, 1H), 2.69-2.57 (m, 1H), 2.40-2.25 (m, 2H),
2.29 (d, 3H, J = 14 Hz), 2.04-1.54 (m, 4H), 1.93 (s, 3H), 1.56
(s, 3H), 1.48-1.37 (m, 1H), 1.07 (s, 9H), 1.05 (s, 9H).
Synlett 2001, No. 4, 467–472 ISSN 0936-5214 © Thieme Stuttgart · New York