European Journal of Organic Chemistry
10.1002/ejoc.201600689
COMMUNICATION
Albrecht, K. Yamamoto, J. Am. Chem. Soc. 2009, 131, 2244-2251; e) D.
Tanaka, K. Nakagawa, M. Higuchi, S. Horike, Y. Kubota, T. C.
Kobayashi, M. Takata, S. Kitagawa, Angew. Chem. 2008, 120, 3978-
3982; Angew. Chem. Int. Ed. 2008, 47, 3914-3918; f) M. Fukuda, R.
Sekiya, R. Kuroda, Angew. Chem. 2008, 120, 718-722; Angew. Chem.
Int. Ed. 2008, 47, 706-710; g) O. P. Lam, C. Anthon, F. W. Heinemann,
J. M. O’Connor, K. Meyer, J. Am. Chem. Soc. 2008, 130, 6567-6576; h)
M. Tantama, W.-C. Lin, S. Licht, J. Am. Chem. Soc. 2008, 130, 15766-
15767; i) L. Liu, G. Zhang, J. Xiang, D. Zhang, D. Zhu, Org. Lett. 2008,
10, 4581-4584.
Jin, W. Han, Chem. Commun. 2015, 51,9133-9136; d) F. L. Jin, Y. Z.
Zhong, X. Zhang, H. C. Zhang, Q. Zhao, W. Han, Green Chem. 2016,
18, 2598-2603.
[14] When NaHCO3 was employed as base, the reaction was failed (Table 1,
entry 9). The big difference between NaHCO3 and KHCO3 is caused by
cation size. A larger cation is better solvated, resulting in higher
reactivity (see also: H. C. Zhang, F. Y. Kwong, Y. Tian, K. S. Chan, J.
Org. Chem. 1998, 63, 6886-6890).
[15] R. B. Appell, L. T. Boulton, E. D. Daugs, M. Hansen, C. H. Hanson, J.
Heinrich, C. Kronig, R. C. Lloyd, D. Louks, M. Nitz, C. Praquin, J. A.
Ramsden, H. Samuel, M. Smit, M. Willets, Org. Process Res. Dev.
2013, 17, 69-76.
[2]
a) K. Maeyama, K. Yamashita, H. Saito, S. Aikawa, Y. Yoshida, Polym.
J. 2012, 44, 315-320; b) C. Y. K. Chan, Z. J. Zhao, J. W. Y. Lam, J. Z.
Liu, S. M. Chen, P. Lu, F. Mahtab, X. J. Chen, H. H. Y. Sung, H. S.
Kwok, Y. G. Ma, I. D. Williams, K. S. Wong, B. Z. Tang, Adv. Funct.
Mater. 2012, 22, 378-389; c) W. L. Zhao, E. M. Carreira, Org. Lett.
2006, 8, 99-102; d) A. L. Ong, A. H. Kamaruddin, S. Bhatia, Process
Biochem. 2005, 40, 3526-3535; e) G. Papageorgiou, D. Ogden, J. E. T.
Corrie, Photochem. Photobiol. Sci. 2008, 7, 423-432; f) E. J. Jeong, Y.
Liu, H. Lin, M. Hu, Drug Metab. Dispos. 2005, 33, 785-794; g) N. D.
Kimpe, M. Keppens, G. Froncg, Chem. Commun. 1996, 5, 635-636; h)
T. G. Kantor, Pharmacotherapy, 1986, 6, 93-103.
[16] a) K. S. Yoo, C. H. Yoon, K. W. Jung, J. Am. Chem. Soc. 2006, 128,
16384-16393; b) C. Adamo, C. Amatore, I. Ciofini, A. Jutand, H.
Lakmini, J. Am. Chem. Soc. 2006, 128, 6829-6836; c) B. W. Zhao, X. Y.
Liu, Org. Lett. 2006, 8, 5987-5990; d) A. F. Littke, C. Y. Dai, G. C. Fu, J.
Am. Chem. Soc. 2000, 122, 4020-4028.
[17] a) S. C. Bonnaire, J. F. Carpentier, A. Mortreux, Y. Castanet,
Tetrahedron, 2001, 42, 3689-3691; b) T. Ishiyama, H. Kizaki, T.
Hayashi, A. Suzuki, N. Miyaura, J. Org. Chem. 1998, 63, 4726-4731.
[18] a) B. Gabriele, M. Costa, G. Salerno, G. P. Chiusoli, J. Chem. Soc.
Chem. Commun. 1992,1007-1008; b) B. Gabriele, M. Costa, G. Salerno,
G. P. Chiusoli, J. Chem. Soc. Perkin Trans. 1. 1994, 83-87; c) R. S.
[3]
[4]
D. G. Hall, Boronic Acids-Preparation and Applications in Organic
Synthesis, Medicine and Materials, Wiley-VCH, Weinheim, 2011, vol. 2.
For some recent reviews on Pd-catalyzed carbonylations of aryl halides,
see: a) S. T. Gadge, B. M. Bhanage, RSC Adv. 2014, 4, 10367-10389;
b) X. F. Wu, H. Neumann, M. Beller, Chem. Rev. 2013, 113, 1-35; c) X.
F. Wu, H. Neumann, M. Beller, Chem. Soc. Rev. 2011, 40, 4986-5009;
d) R. Grigg, S. P. Mutton, Tetrahedron, 2010, 66, 5515-5548; e) A.
Brennfuhrer, H. Neumann, M. Beller, Angew. Chem. 2009, 121, 4176-
4196; Angew. Chem. Int. Ed. 2009, 48, 4114-4133; f) J. J. Brunet, R.
Chauvin, Chem. Soc. Rev. 1995, 24, 89-95.
Mane,
B.
M.
Bhanage,
J.
Org.
Chem.
2016,
DOI:10.1021/acs.joc.6b00386; d) M.-N. Zhao, L. F. Ran, M. Chen, Z.-H.
Ren, Y.-Y. Wang, Z.-H. Guan, ACS Catalysis, 2015, 5, 1210-1213.
[5]
Q. Liu, H. Zhang, A. W. Lei, Angew. Chem. 2011, 123, 10978-10989;
Angew. Chem. Int. Ed. 2011, 50, 10788-10799; b) Q. Liu, G. Li, H. He,
J. Liu, P. Li, A. W. Lei, Angew. Chem. 2010, 122, 3443-3446; Angew.
Chem. Int. Ed. 2010, 49, 3371-3374; c) G. Zanti, D. Peeters, Eur. J.
Inorg. Chem. 2009, 2009, 3904-3911.
[6]
[7]
a) B. Gabriele, R. Mancuso, G. Salerno, Eur. J. Org. Chem. 2012, 2012,
6825-6839; b) X. F. Wu, H. Neumann, M. Beller, ChemSusChem. 2013,
6, 229-241.
a) C. S. Cho, T. Ohe, S. Uemura, J. Organomet. Chem.1995, 496, 221-
226; b) H. Chochois, M. Sauthier, E. Maerten, Y. Castanet, A. Mortreux,
Tetrahedron, 2006, 62, 11740-11746.
[8]
[9]
Y. Li, W. Lu, D. Xue, C. Wang, Z. T. Liu, J. L. Xiao, Synlett. 2014, 25,
1097-1100.
L. Ren, N. Jiao, Chem. Asian J. 2014, 9, 2411-2414.
[10] a) S. Darses, J. P. Genet, Chem.Rev. 2008, 108, 288-325; b) H.
Doucet, Eur. J. Org. Chem. 2008, 2008, 2013-2030; c) G. A. Molander,
N. Ellis, Acc. Chem. Res. 2007, 40, 275-286; d) H. A. Stefani, R. Cella,
A. S. Vieira, Tetrahedron, 2007, 63, 3623-3658; e) G. A. Molander, R.
Figueroa, Aldrichim. Acta. 2005, 38, 49-56; f) S. Darses, J. P. Genet,
Eur. J. Org. Chem. 2003, 2003, 4313-4327.
[11] a) G. A. Molander, J. Raushel, N. Ellis, J. Org. Chem. 2010, 75, 4304-
4306; b) G. A. Molander, D. J. Cooper, J. Org. Chem. 2008, 73, 3885-
3891.
[12] Selective examples of oxidative carbonylation related to arylboron
reagents: a) Y. Yamamoto, Adv. Synth. Catal. 2010, 352, 478-492; b) X.
F. Wu, H. Neumann, M. Beller, Chem. Asian J. 2012, 7, 282-285; c) K.
Natte, J. B. Chen, H. Neumann, M. Beller, X. F. Wu, Org. Bio. Chem.
2014, 12, 5590-5593; d) N. Miyaura, A. Suzuki, Chem. Lett. 1981, 10,
879-882; e) N. Yamashina, S. Hyuga, S. Hara, A. Suzuki, Tetrahedron
Lett. 1989, 30, 6555-6558; f) T. Ohe, K. Ohe, S. Uemura, N. Sugita, J.
Organomet. Chem. 1988, 344, C5-C7; g) Q. J. Zhou, K. Worm, R. E.
Dolle, J. Org. Chem. 2004, 69, 5147-5149; h) W. Lu, Y. Li, C. Wang, D.
Xue, J. G. Chen, J. L. Xiao, Org. Biomol.Chem. 2014, 12, 5243-5249.
[13] a) Y. Z. Zhong, W. Han, Chem. Commun. 2014, 50, 3874-3877; b) Q.
Zhou, S. H. Wei, W. Han, J. Org. Chem. 2014, 79, 1454-1460; c) F. L.