2860 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 10
Letters
Table 1. Inhibition Data against Mammalian sPLA2s for Compounds
A-Da
(9) Kuwata, H.; Nonaka, T.; Murakami, M.; Kudo, I. Search of factors
that intermediate cytokine-induced group IIA phospholipase A2
expression through the cytosolic phospholipase A2- and 12/15-
lipoxygenase-dependent pathway. J. Biol. Chem. 2005, 280, 25830-
25839.
compound IC50 (µM)
sPLA2
A
B
C
D
(10) Hara, S.; Kudo, I.; Chang, H. W.; Matsuta, K.; Miyamoto, T.; Inoue,
K. Purification and characterization of extracellular phospholipase
A2 from human synovial fluid in rheumatoid arthritis. J. Biochem.
(Tokyo) 1989, 105, 395-399.
(11) Gronroos, J. M.; Nevalainen, T. J. Increased concentrations of
synovial-type phospholipase A2 in serum and pulmonary and renal
complications in acute pancreatitis. Digestion 1992, 52, 232-236.
(12) Dillard, R. D.; Bach, N. J.; Draheim, S. E.; Berry, D. R.; Carlson,
D. G.; Chirgadze, N. Y.; Clawson, D. K.; Hartley, L. W.; Johnson,
L. M.; Jones, N. D.; McKinney, E. R.; Mihelich, E. D.; Olkowski, J.
L.; Schevitz, R. W.; Smith, A. C.; Snyder, D. W.; Sommers, C. D.;
Wery, J. P. Indole inhibitors of human nonpancreatic secretory
phospholipase A2. 1. Indole-3-acetamides. J. Med. Chem. 1996, 39,
5119-5136.
(13) Dillard, R. D.; Bach, N. J.; Draheim, S. E.; Berry, D. R.; Carlson,
D. G.; Chirgadze, N. Y.; Clawson, D. K.; Hartley, L. W.; Johnson,
L. M.; Jones, N. D.; McKinney, E. R.; Mihelich, E. D.; Olkowski, J.
L.; Schevitz, R. W.; Smith, A. C.; Snyder, D. W.; Sommers, C. D.;
Wery, J. P. Indole inhibitors of human nonpancreatic secretory
phospholipase A2. 2. Indole-3-acetamides with additional functional-
ity. J. Med. Chem. 1996, 39, 5137-5158.
(14) Draheim, S. E.; Bach, N. J.; Dillard, R. D.; Berry, D. R.; Carlson,
D. G.; Chirgadze, N. Y.; Clawson, D. K.; Hartley, L. W.; Johnson,
L. M.; Jones, N. D.; McKinney, E. R.; Mihelich, E. D.; Olkowski, J.
L.; Schevitz, R. W.; Smith, A. C.; Snyder, D. W.; Sommers, C. D.;
Wery, J. P. Indole inhibitors of human nonpancreatic secretory
phospholipase A2. 3. Indole-3-glyoxamides. J. Med. Chem. 1996,
39, 5159-5175.
(15) Schevitz, R. W.; Bach, N. J.; Carlson, D. G.; Chirgadze, N. Y.;
Clawson, D. K.; Dillard, R. D.; Draheim, S. E.; Hartley, L. W.; Jones,
N. D.; Mihelich, E. D.; Olkowski, J. L.; Snyder, D. W.; Sommers,
C.; Wery, J. P. Structure-based design of the first potent and selective
inhibitor of human nonpancreatic secretory phospholipase A2. Nat.
Struct. Biol. 1995, 2, 458-465.
(16) Beaton, H. G.; Bennion, C.; Connolly, S.; Cook, A. R.; Gensmantel,
N. P.; Hallam, C.; Hardy, K.; Hitchin, B.; Jackson, C. G.; Robinson,
D. H. Discovery of new nonphospholipid inhibitors of the secretory
phospholipases A2. J. Med. Chem. 1994, 37, 557-559.
(17) Reid, R. C. Inhibitors of secretory phospholipase A2 group IIA. Curr.
Med. Chem. 2005, 12, 3011-3026.
(18) Smart, B. P.; Pan, Y. H.; Weeks, A. K.; Bollinger, J. G.; Bahnson,
B. J.; Gelb, M. H. Inhibition of the complete set of mammalian
secreted phospholipases A(2) by indole analogues: a structure-guided
study. Bioorg. Med. Chem. 2004, 12, 1737-1749.
hGIB
mGIB
hGIIA
mGIIA 0.05 ( 0.01
hGIIE 0.05 ( 0.01
0.80 ( 0.10
0.20 ( 0.05
0.75 ( 0.15
2.00 ( 0.20
2.50 ( 0.25
2.20 ( 0.15
0.14 ( 0.075 2.00 ( 0.10
0.125 ( 0.03 0.125 ( 0.02 0.30 ( 0.05
0.275 ( 0.05
0.07 ( 0.02
0.05 ( 0.02
0.125 ( 0.02 0.125 ( 0.02
0.125 ( 0.03 0.075 ( 0.01
mGIIE 0.075 ( 0.02 0.075 ( 0.02 0.40 ( 0.05
0.40 ( 0.04
0.80 ( 0.05
1.00 ( 0.075
2.00 ( 0.15
2.50 ( 0.20
hGV
mGV
hGX
mGX
0.50 ( 0.1
0.75 ( 0.15
0.075 ( 0.01 0.075 ( 0.01 2.20 ( 0.10
0.075 ( 0.01 0.075 ( 0.01 2.50 ( 0.15
0.50 ( 0.05
0.75 ( 0.10
0.80 ( 0.05
0.85 ( 0.05
a IC50s are based on duplicate or triplicate analyses.
mGV, hGX, and mGX). In all cases the 2-ethyl compounds are
more potent than the 2-methyl derivatives, and the 6-methyl
group is tolerated (Table 1). Compounds A and B should be
useful in distinguishing the groups X and V sPLA2s based on
the ∼10- fold increased potency for the former. This is
significant because current evidence favors a role of these two
sPLA2s in arachidonate liberation in mammalian cells. Although
these compounds are also potent inhibitors of the group IIA
sPLA2s, the original lead compound Me-Indoxam is 50-fold
more potent on hGIIA and mGIIA versus hGX and mGX.18
Thus, by carrying out studies with a combination of inhibitors,
it should be possible to probe for the role of specific sPLA2s in
cellular processes.
In conclusion, the first potent inhibitor against hGX and mGX
sPLA2s has been discovered. A new chemical route to these
indole-based sPLA2 inhibitors has been developed.
Supporting Information Available: Experimental details in-
cluding the synthesis of all compounds and assay procedures. This
material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Valentin, E.; Lambeau, G. Increasing molecular diversity of secreted
phospholipases A(2) and their receptors and binding proteins.
Biochim. Biophys. Acta 2000, 1488, 59-70.
(2) Six, D. A.; Dennis, E. A. The expanding superfamily of phospholipase
A(2) enzymes: classification and characterization. Biochim. Biophys.
Acta 2000, 1488, 1-19.
(19) Bezzine, S.; Koduri, R. S.; Valentin, E.; Murakami, M.; Kudo, I.;
Ghomashchi, F.; Sadilek, M.; Lambeau, G.; Gelb, M. H. Exogenously
added human group X secreted phospholipase A(2) but not the group
IB, IIA, and V enzymes efficiently release arachidonic acid from
adherent mammalian cells. J. Biol. Chem. 2000, 275, 3179-3191.
(20) Hanasaki, K.; Ono, T.; Saiga, A.; Morioka, Y.; Ikeda, M.; Kawamoto,
K.; Higashino, K.; Nakano, K.; Yamada, K.; Ishizaki, J.; Arita, H.
Purified group X secretory phospholipase A(2) induced prominent
release of arachidonic acid from human myeloid leukemia cells. J.
Biol. Chem. 1999, 274, 34203-34211.
(21) Hamaguchi, K.; Kuwata, H.; Yoshihara, K.; Masuda, S.; Shimbara,
S.; Oh-ishi, S.; Murakami, M.; Kudo, I. Induction of distinct sets of
secretory phospholipase A(2) in rodents during inflammation. Bio-
chim. Biophys. Acta 2003, 1635, 37-47.
(3) Berg, O. G.; Gelb, M. H.; Tsai, M. D.; Jain, M. K. Interfacial
enzymology: the secreted phospholipase A(2)-paradigm. Chem. ReV.
2001, 101, 2613-2654.
(4) Murakami, M.; Kudo, I. Phospholipase A2. J. Biochem. (Tokyo) 2002,
131, 285-292.
(5) Leslie, C. C. Properties and regulation of cytosolic phospholipase
A2. J. Biol. Chem. 1997, 272, 16709-16712.
(6) Satake, Y.; Diaz, B. L.; Balestrieri, B.; Lam, B. K.; Kanaoka, Y.;
Grusby, M. J.; Arm, J. P. Role of group V phospholipase A2 in
zymosan-induced eicosanoid generation and vascular permeability
revealed by targeted gene disruption. J. Biol. Chem. 2004, 279,
16488-16494.
(7) Mounier, C. M.; Ghomashchi, F.; Lindsay, M. R.; James, S.; Singer,
A. G.; Parton, R. G.; Gelb, M. H. Arachidonic acid release from
mammalian cells transfected with human groups IIA and X secreted
phospholipase A(2) occurs predominantly during the secretory process
and with the involvement of cytosolic phospholipase A(2)-alpha. J.
Biol. Chem. 2004, 279, 25024-25038.
(8) Balsinde, J.; Balboa, M. A.; Yedgar, S.; Dennis, E. A. Group V
phospholipase A(2)-mediated oleic acid mobilization in lipopolysac-
charide-stimulated P388D(1) macrophages. J. Biol. Chem. 2000, 275,
4783-4786.
(22) Dudler, T.; Chen, W. Q.; Wang, S.; Schneider, T.; Annand, R. R.;
Dempcy, R. O.; Crameri, R.; Gmachl, M.; Suter, M.; Gelb, M. H.
High-level expression in Escherichia coli and rapid purification of
enzymatically active honey bee venom phospholipase A2. Biochim.
Biophys. Acta 1992, 1165, 201-210.
JM060136T