Job/Unit: I42040
/KAP1
Date: 19-05-14 18:41:43
Pages: 10
FULL PAPER
(3ϫ 10 mL) and three times with diethyl ether (3ϫ 10 mL) to ob-
tain 53 mg of 6 (27% yield) as a colourless solid. 1H NMR
H) ppm. 13C NMR (75 MHz, CDCl3): δ = 175.4, 158.7, 137.9,
130.2, 129.4, 123.2, 116.2, 109.1.3, 106.6, 65.1, 56.6, 31.1, 19.6,
(300 MHz, [D6]DMSO): δ = 8.99 (d, J = 5.2 Hz, 2 H), 8.15 (dt, J 14.09 ppm. HRMS: calcd. for C14H17NO5 279.1107 [M]+; found
= 7.6, 1.5 Hz, 1 H), 8.05 (d, J = 7.0 Hz, 1 H), 7.65–7.58 (m, 1 H),
7.49–7.34 (m, 5 H), 6.22 (d, J = 15.6 Hz, 1 H), 6.05 (d, J = 15.7 Hz,
1 H), 5.81 (d, J = 15.5 Hz, 1 H), 5.68 (d, J = 15.8 Hz, 1 H) ppm.
13C NMR (75 MHz, [D6]DMSO): δ = 162.2, 154.2, 151.2, 140.4,
134.3, 128.7, 128.6, 127.9, 126.2, 125.3, 117.0 (CN), 114.3 (CN),
279.1102 [M]+.
The analytical data for literature-known, but not further described
n-butyl (E)-3-(3Ј-Hydroxyphenyl)acrylate (Table 5, entry 20)[26a]
and n-butyl (E)-3-(9Ј-anthryl)acrylate (Table 5, entry 29),[25e,26b] are
also presented.
106.8 (CCN), 106.7 (CCN), 55.4, 53.7 ppm. FTIR (KBr): ν = 3367,
˜
3322, 3014, 2980, 2944, 2922, 2861, 2735, 2206 (CN), 1742, 1602,
1484, 1457, 1448, 1437, 1352, 1227, 1158, 1038, 1010, 891, 857, 822,
777, 706, 564, 502, 419 cm–1. HRMS: calcd. for C18H13Cl2N5Pd
474.9583 [M]+; found 439.9992 [M – Cl]+. C18H13Cl2N5Pd (474.96):
calcd. C 45.36, H 2.75, N 14.69; found C 45.07, H 2.87, N 14.85.
n-Butyl (E)-3-(3Ј-Hydroxyphenyl)acrylate: 1H NMR (300 MHz,
CD2Cl2): δ = 7.66 (d, J = 15.9 Hz, 1 H), 7.25 (t, J = 7.8 Hz, 1 H),
7.18 (s, 1 H), 7.10–7.06 (m, 2 H), 7.07–7.03 (m, 1 H), 6.43 (d, J =
16.2 Hz, 1 H), 4.25 (t, J = 6.6 Hz, 2 H), 1.76–1.66 (m, 2 H), 1.51–
1.38 (m, 2 H), 0.97 (t, J = 7.2 Hz, 3 H) ppm. 13C NMR (75 MHz,
CDCl3): δ = 168.1, 156.5, 145.2, 135.7, 130.0, 120.6, 118.1, 117.8,
114.7, 65.0, 30.7, 19.2, 13.7 ppm. HRMS: calcd. for C13H16O3
220.1099 [M]+; found 220.1095 [M]+.
Representative Procedure for the Mizoroki–Heck Reaction: Sodium
carbonate (18.7 mg, 176 μmol; 1.4 equiv.) and TBAB (4.1 mg,
12.6 μmol; 0.1 equiv.) were added to a 2 mL Schlenk tube fitted
with a magnetic stirrer. A solution of precatalyst 2 (100 μg,
126 nmol; 0.001 equiv.) and 1,3,5-trimethoxybenzene (2.11 mg,
12.6 μmol; 0.1 equiv.) in N,N-dimethylformamide (0.5 mL) was
added and the mixture was stirred. Bromobenzene (19.8 mg,
13.2 μL; 126 μmol) and n-butyl acrylate (32.3 mg, 35.9 μL,
252 μmol; 2.0 equiv.) were added through a syringe and the tube
was sealed and then secured by evacuating three times and sub-
sequently flushing with argon. The flask was then placed in a pre-
heated oil bath at 140 °C and stirred for 16 h. After completion of
the reaction, the flask was immediately cooled to 0 °C in an ice
bath. The cold mixture was hydrolysed with 1 n hydrochloric acid
(2 mL) and chloroform (2 mL) was then added. The mixture was
poured into water (20 mL) and the aqueous phase extracted three
times with chloroform (2 mL).
1
n-Butyl (E)-3-(9Ј-Anthryl)acrylate: H NMR (300 MHz, CDCl3): δ
= 8.65 (d, J = 16.2 Hz, 1 H), 8.45 (s, 1 H), 8.30–8.21 (m, 2 H),
8.06–7.97 (m, 2 H), 7.55–7.44 (m, 4 H), 6.45 (d, J = 16.2 Hz, 1 H),
4.32 (t, J = 6.6 Hz, 2 H), 1.83–1.73 (m, 2 H), 1.57–1.44 (m, 2 H),
1.02 (t, J = 7.2 Hz, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ =
166.6, 141.9, 131.3, 129.3, 128.8, 128.2, 127.3, 126.3, 125.4, 125.2,
64.8, 30.8, 19.3, 13.8 ppm. HRMS: calcd. for C21H20O2 303.1463
[M]+; found 303.1460 [M]+.
[1] For reviews of the MH reaction, see: a) G. T. Crisp, Chem. Soc.
Rev. 1998, 27, 427–436; b) I. P. Beletskaya, A. V. Cheprakov,
Chem. Rev. 2000, 100, 3009–3066; c) N. T. S. Phan, M.
Van Der Sluys, C. W. Jones, Adv. Synth. Catal. 2006, 348, 609–
679; d) J. P. Knowles, A. Whiting, Org. Biomol. Chem. 2007, 5,
31–44; e) M. Oestreich, The Mizoroki–Heck Reaction, Wiley,
Chichester, UK, 2009; f) N. Selander, K. J. Szabo, Chem. Rev.
2011, 111, 2048–2076; g) A. Molnar, Chem. Rev. 2011, 111,
2251–2320; h) M. Yus, I. M. Pastor, Chem. Lett. 2013, 42, 94–
108.
For the catalytic screening, the crude product was dissolved in
chloroform (1.5 mL; GC grade from Merck) and the GC yield de-
termined by using a Perkin–Elmer Clarus 580 instrument equipped
with a Perkin–Elmer Elite 5 MS column (length: 30 m, diameter:
0.25 mm). Signals were detected by using an FID detector. 1,3,5-
Trimethoxybenzene was used as internal standard to determine GC
yields.
[2] R. F. Heck, J. P. Nolley Jr., J. Org. Chem. 1972, 37, 2320–2322.
[3] A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc.
1991, 113, 361–363.
To calibrate the GC, the MH products were isolated by flash
chromatography on silica (height: 460 mm, diameter: 15 mm) with
hexane/ethyl acetate mixtures as eluent and afterwards analysed by
1H and 13C NMR spectroscopy and mass spectrometry. The spec-
troscopic data of already known products were in agreement with
literature data.[25]
[4] W. A. Herrmann, M. Elison, J. Fischer, C. Kocher, G. R. J.
Artus, Angew. Chem. Int. Ed. Engl. 1995, 34, 2371–2374; An-
gew. Chem. 1995, 107, 2602.
[5] For recent reviews on the development of NHCs, see: a) F. E.
Hahn, M. C. Jahnke, Angew. Chem. Int. Ed. 2008, 47, 3122–
3172; Angew. Chem. 2008, 120, 3166; b) P. de Fremont, N. Mar-
ion, S. P. Nolan, Coord. Chem. Rev. 2009, 253, 862–892; c) M.
Melaimi, M. Soleilhavoup, G. Bertrand, Angew. Chem. Int. Ed.
2010, 49, 8810–8849; Angew. Chem. 2010, 122, 8992; d) T.
Dröge, F. Glorius, Angew. Chem. Int. Ed. 2010, 49, 6940–6952;
Angew. Chem. 2010, 122, 7094; e) L. Benhamou, E. Chardon,
G. Lavigne, S. Bellemin-Laponnaz, V. Cesar, Chem. Rev. 2011,
111, 2705–2733; for recent contributions involving electron-de-
ficient NHC ligands, see: f) A. G. Tennyson, E. L. Rosen, M. S.
Collins, V. M. Lynch, C. W. Bielawski, Inorg. Chem. 2009, 48,
6924–6933; g) T. W. Hudnall, A. G. Tennyson, C. W. Bielawski,
Organometallics 2010, 29, 4569–4578; h) T. W. Hudnall, J. P.
Moerdyk, C. W. Bielawski, Chem. Commun. 2010, 46, 4288–
4290; i) A. G. Tennyson, R. J. Ono, T. W. Hudnall, D. M.
Khramov, J. A. V. Er, J. W. Kamplain, V. M. Lynch, J. L.
Sessler, C. W. Bielawski, Chem. Eur. J. 2010, 16, 304–315; j) F.-
G. Sun, X.-L. Huang, S. Ye, J. Org. Chem. 2010, 75, 273–276.
[6] For examples of the MH reaction, see: a) Q. Yao, M. Zabawa,
J. Woo, C. Zheng, J. Am. Chem. Soc. 2007, 129, 3088–3089; b)
S. G. Fiddy, J. Evans, T. Neisius, M. A. Newton, N. Tsoureas,
A. A. D. Tulloch, A. A. Danopoulos, Chem. Eur. J. 2007, 13,
3652–3659; c) M. T. Lee, H. M. Lee, C. H. Hu, Organometallics
n-Butyl (E)-3-(4Ј-Diethylaminophenyl)acrylate (Table 5, entry 13)
and n-butyl (E)-3-(2Ј-Methoxy-4Ј-nitrophenyl)acrylate (Table 5, en-
try 15) were prepared for the first time.
n-Butyl
(E)-3-(4Ј-Diethylaminophenyl)acrylate:
1H
NMR
(300 MHz, CDCl3): δ = 7.61 (d, J = 15.9 Hz, 1 H), 7.39 (d, J =
9.0 Hz, 2 H), 6.62 (d, J = 9.0 Hz, 2 H), 6.19 (d, J = 15.9 Hz, 1 H),
4.18 (t, J = 12.0 Hz, 2 H), 3.39 (q, J = 7.2 Hz, 4 H), 1.73–1.63 (m,
2 H), 1.50–1.37 (m, 2 H), 1.18 (t, J = 7.2 Hz, 6 H), 0.96 (t, J =
7.2 Hz, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 168.5, 149.7,
145.5, 130.4, 121.9, 112.4, 111.6, 64.3, 44.8, 31.3, 19.4, 14.2,
13.0 ppm. HRMS: calcd. for C17H25NO2 275.1885 [M]+; found
275.1892 [M]+.
n-Butyl (E)-3-(2Ј-Methoxy-4Ј-nitrophenyl)acrylate: 1H NMR
(300 MHz, CDCl3): δ = 7.96 (d, J = 16.2 Hz, 1 H), 7.86 (dd, J =
8.4, 2.1 Hz, 1 H), 7.78 (d, J = 2.1 Hz, 2 H), 7.66 (d, J = 8.4 Hz, 1
H), 6.65 (d, J = 16.2 Hz, 1 H), 4.25 (t, J = 6.9 Hz, 2 H), 4.02 (s, 3
H), 1.77–1.67 (m, 2 H), 1.52–1.40 (m, 2 H), 0.99 (t, J = 7.2 Hz, 3
Eur. J. Inorg. Chem. 0000, 0–0
8
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim