1054 J ournal of Medicinal Chemistry, 1996, Vol. 39, No. 5
Xie et al.
8.08 (1 H, t, J ) 7.5 Hz), 9.88 (1 H, s), 10.38 (1 H, s), 10.92 (1
H, s), 11.15 (1 H, s); HRMS (FAB) calcd for C39H39O5N9H
(MH+) 714.3152, found 714.3148.
respectively. Fluorescence was recorded both before (BH) and
after (AH) heat denaturation of DNA.
Dr u g-DNA Bin d in g. C50 values of drugs were determined
as described.17 The assay was performed at pH 5.0 (9.3 mM
NaCl, 2 mM NaOAc buffer, pH 5.0, 0.1 mM EDTA, and 1.26
µM ethidium bromide) so that the added drugs exist in cationic
form.
3-[1-[[[[1-Meth yl-2-[[[1-m eth yl-2-[[[1-m eth yl-2-[[[3-(N,N-
d im eth yla m in o)p r op yl]a m in o]ca r bon yl]-4-p yr r olyl]a m i-
n o]car bon yl]-4-pyr r olyl]am in o]car bon yl]-4-pyr r olyl]am i-
n o]ca r bon yl]m eth yl]-3-in d olyl]-4-(3-in d olyl)-1H-p yr r ole-
2,5-d ion e (9). Prepared from 3 (37 mg, 0.075 mmol) and 16
(25 mg, 0.065 mmol) as a red solid in 52% yield as described
above for 7: mp 154 °C dec; IR (CH2Cl2-MeOH) 3245, 1706,
Cell Cu lt u r e Cyt ot oxicit y Assa y. In vitro cytotoxicity
assay of compounds was performed using KB cancer cell line
(ATCC CCL 17).18 KB cells were cultivated in Eagle’s mini-
mum essential medium supplemented with 10% calf serum
and incubated in a humidified 5% CO2 atmosphere at 37 °C.
Cells were counted on a Neubauer hemocytometer and seeded
at 100 µL of 3 × 103 cells per mL per well and allowed to
culture for 24 h. Test compounds were added in triplicate at
different concentrations. Control wells were identical except
that the test compound was absent. After 3 days, the cells
were fixed in 25% glutaraldehyde, washed with water, dried,
and then stained with 100 µL of 0.05% crystal violet. The wells
were eluted with 0.05 M NaH2PO4-ethanol (1:1 v/v) and read
at OD450 on a multiscan spectrophotometer. TD50 values were
determined as the concentrations required to reduce KB cell
count by 50%.
1
1643, 1578, 1465, 1403, 1124, 1063 cm-1; H NMR δ 1.64 (2
H, p, J ) 7.5 Hz), 2.18 (6 H, s), 2.28 (2 H, t, J ) 7.5 Hz), 3.20
(2 H, q, J ) 7.5 Hz), 3.80-3.91 (9 H, m), 5.12 (2 H, s), 6.60-
6.72 (3 H, m), 6.81 (1 H, s), 6.92-7.05 (5 H, m), 7.15-7.40 (5
H, m), 7.72 (1 H, d, J ) 2.0 Hz), 7.92 (1 H, s), 8.10 (1 H, t, J
) 7.5 Hz), 9.90 (1 H, s), 9.94 (1 H, s), 10.48 (1 H, s), 10.95 (1
H, s), 11.18 (1 H, s); HRMS (FAB) calcd for C45H45O6N11
H
(MH+) 836.3632, found 836.3629.
3-[1-[[[[1-Meth yl-2-(m eth oxyca r bon yl)-4-p yr r olyl]a m i-
n o]ca r bon yl]m eth yl]-3-in d olyl]-4-(3-in d olyl)-1H-p yr r ole-
2,5-d ion e (10). Prepared from 4 (22 mg, 0.12 mmol) and 16
(40.5 mg, 0.105 mmol) as a red solid in 69% yield as described
above for 7: mp 91-92 °C; IR (CH2Cl2-MeOH) 3304, 1705,
1577, 1532, 1449, 1406, 1340, 1258, 1141, 1062, 794 cm-1; 1H
NMR δ 3.25 (3 H, s), 3.80 (3 H, s), 5.08 (2 H, s), 6.60-6.58 (3
H, m), 6.75 (1 H, d, J ) 2.0 Hz), 6.90-7.05 (3 H, m), 7.71 (1 H,
d, J ) 2.0 Hz), 7.89 (1 H, s), 10.38 (1 H, s), 10.90 (1 H, br),
11.65 (1 H, s); HRMS (EI) calcd for C29H23O5N5 521.169 92,
found 521.169 37.
Ack n ow led gm en t. The authors acknowledge the
National Cancer Institute of Canada and the Depart-
ment of Chemistry, University of Alberta, for support
of this research.
3-[1-[[[[1-Meth yl-2-[[[1-m eth yl-2-(m eth oxyca r bon yl)-4-
p yr r olyl]a m in o]ca r bon yl]-4-p yr r olyl]a m in o]ca r bon yl]m -
eth yl]-3-in d olyl]-4-(3-in d olyl)-1H-p yr r ole-2,5-d ion e (11).
Prepared from 5 (37 mg, 0.12 mmol) and 16 (38.5 mg, 0.10
mmol) as a red solid in 53% yield as described above for 7: mp
142 °C dec; IR (CH2Cl2-MeOH) 3204, 2948, 1758, 1632, 1548,
Refer en ces
(1) (a) Wang, J . C. DNA Topoisomerases. Annu. Rev. Biochem.
1985, 54, 665-697. (b) Liu, L. F. DNA Topoisomerase Poisons
and Antitumor Drugs. Annu. Rev. Biochem. 1989, 58, 371-375.
(2) (a) D’Arpa, P.; Liu, L. F. DNA Topoisomerase-targeting Antitu-
mor Drugs. Biochem. Biophys. Acta 1989, 989, 163-177. (b)
Hsiang, Y. H.; Herzberg, R.; Hecht, S.; Liu, L. F. Camptothecin
Induces Protein-Linked DNA Breaks via Mammalian DNA
Topoisomerase I. J . Biol. Chem. 1985, 260, 14873-14878.
(3) Kaneda, N.; Nagata, H.; Furuta, T.; Yokokura, T. Metabolism
and Pharmacokinetics of Camptothecin Analogue CPT-11 in the
Mouse. Cancer Res. 1990, 50, 1715-1720.
(4) Kingsbury, W. D.; Boehm, J . C.; J akes, D. R.; Holden, K. G.;
Hecht, S. M.; Gallagher, G.; Caranfa, M. J .; McCabe, F. L.;
Faucette, L. F.; J ohnson, R. K.; Hertzberg, R. P. Synthesis of
Water-Soluble(Aminoalkyl) Camptothecin Analogues: Inhibition
of Topoisomerase I and Antitumor Activity. J . Med. Chem. 1991,
34, 98-107.
(5) Yamashita, Y.; Fujii, N.; Murakata, C.; Ashizawa, T.; Okabe,
M.; Nakano, H. Induction of Mammalian DNA Topoisomerase I
Mediated DNA Cleavage by Antitumor Indolocarbazole Deriva-
tives. Biochemistry 1992, 31, 12069-12075.
(6) (a) Hsiang, Y. H.; Liu, L. F. Evidence for the reversibility of
Cellular DNA Lesion Induced by Mammalian Topoisomerase II
Poisons. J . Biol. Chem. 1989, 264, 9713-9715. (b) J axel, C.;
Kohn, K. W.; Wani, M. C.; Wall, M. C.; Pommier, Y. Structure-
Activity Study of the Actions of Camptothecin Derivatives on
Mammalian Topoisomerase I: Evidence for a Specific Receptor
Site and Relation to Antitumor Activity. Cancer Res. 1989, 49,
1465-1469.
(7) Woynarowski, J . M.; McHugh, M.; Sigmund, R. D.; Beerman,
T. A. Modulation of Topoisomerase II Catalytic Activity by DNA
Minor Groove Binding Agents Distamycin, Hoechst 33258, and
4′,6-Diamidine-2-phenylindone. Mol. Pharmacol. 1989, 35, 177-
182.
(8) McHugh, M. M.; Sigmund, T.; Beerman, T. A. The Effect of Minor
Groove Binding Drugs on Camptothecin Induced DNA Lesions
in L1210 Nuclei. Biochem. Pharmacol. 1990, 39, 7077-7140.
(9) Xie, G.; Lown, J . W. A Facile Synthesis of Staurosporine
Aglycone. Tetrahedron Lett. 1994, 35, 5555-5558.
(10) Hughes, I.; Nolan, W. P.; Raphael, R. A. Synthesis of the Indolo-
[2,3-a]carbazole Natural Products Staurosporinone and Acrifla-
vin B. J . Chem. Soc., Perkin Trans. 1 1990, 2457-2480.
(11) (a) Xie, G.; Morgan, A. R.; Lown, J . W. Synthesis and DNA
Cleaving Properties of Hybrid Molecules Containing Propargylic
Sulfones and Minor Groove Binding Lexitropsins. Bioorg. Med.
Chem. Lett. 1993, 13, 1565-1570. (b) Lown, J . W.; Krowicki,
K. Efficient Total Syntheses of the Oligopeptide Antibiotics
Netropsin and Distamycin. J . Org. Chem. 1985, 50, 3774-3779.
(12) (a) Andrea, J . E.; Adachi, K.; Morgan, A. R. Fluorometric Assays
for DNA Topoisomerases and Topoisomerase-Targeted Drugs:
Quantitation of Catalytic Activity and DNA Cleavage. Mol.
1
1423, 1104, 978 cm-1; H NMR δ 3.72 (3 H, s), 3.83 (3 H, s),
3.84 (3 H, s), 5.10 (2 H, s), 6.58-6.70 (3 H, m), 6.85 (1 H, d, J
) 2.0 Hz), 6.88-7.00 (5 H, m), 7.15 (1 H, d, J ) 2.0 Hz), 7.35-
7.40 (2 H, m), 7.45 (1 H, d, J ) 2.0 Hz), 7.69 (1 H, d, J ) 2.0
Hz), 7.90 (1 H, s), 9.92 (1 H, s), 10.38 (1 H, s), 10.90 (1 H, br),
11.65 (1 H, s); HRMS (FAB) calcd for C35H29O6N7H 644.2257,
found 644.2231.
3-[1-[[[[1-Met h yl-2-[[[1-m et h yl-2-[[[1-m et h yl-2-(m et h -
oxycar bon yl)-4-pyr r olyl]am in o]car bon yl]-4-pyr r olyl]am i-
n o]ca r b on yl]-4-p yr r olyl]a m in o]ca r b on yl]m et h yl]-3-in -
d olyl]-4-(3-in d olyl)-1H-p yr r ole-2,5-d ion e (12). Prepared
from 6 (32 mg, 0.074 mmol) and 16 (25.7 mg, 0.06 mmol) as a
red solid in 48% yield as described above for 7: mp 198 °C dec;
IR (CH2Cl2-MeOH) 3279, 1703, 1652, 1615, 1580, 1532, 1465,
1
1341, 1256, 1191, 1059 cm-1; H NMR δ 3.71 (3 H, s), 3.83 (9
H, s), 5.10 (2 H, s), 6.56-6.70 (3 H, m), 6.90-7.08 (6 H, m),
7.18 (1 H, d, J ) 2.0 Hz), 7.24 (1 H, d, J ) 2.0 Hz), 7.32-7.40
(2 H, m), 7.46 (1 H, d, J ) 2.0 Hz), 7.60 (1 H, d, J ) 2.0 Hz),
7.91 (1 H, s), 9.95 (2 H, s), 10.48 (1 H, s), 10.92 (1 H, s), 11.15
(1 H, s); HRMS (FAB) calcd for C41H35O7N9H (MH+) 766.2737,
found 766.2700.
Top oisom er a se I Rela xa tion Assa y a n d F lu or escen ce
Assa y by Eth id iu m Br om id e. The assays were done as
described previously.12,16 In brief, 0.25 µg of pBR322 DNA and
0.5 unit of topoisomerase I were incubated for 30 min at 37
°C in the presence of the ligands in a final volume of 10 µL.
Following the incubation, an equal volume of agarose gel
loading buffer5 (2 × TBA, 0.1% bromophenol blue, 0.2% SDS
and 20% glycerol) was added and incubated for another 30 min
at 37 °C prior to loading. The gel was run overnight and
stained in 0.5 µg/mL ethidium bromide solution, and the DNA
was visualized using 300 nm wavelength transiluminator and
photographed with Polaroid film. The negative was scanned
on an LKB ultroscan XL laser densitometer.
For fluorescence studies, 0.25 µg of pBR322 DNA was
incubated with ligands in the presence and absence of topoi-
somerase I (0.5 unit) for 30 min at 37 °C. Following the
incubation, 1.2 mL of ethidium bromide buffer (0.5 µg/mL
ethidium bromide, 20 mM K3PO4, and 0.5 mM EDTA, pH 12)
was added for fluorometry. The fluorescence was recorded on
a Perkin-Elmer Model 650-40 fluorescence spectrophotometer
with excitation and emission wavelengths of 525 and 600 nm,