Organic & Biomolecular Chemistry
Communication
3 P. B. Smith, Carbohydrate Hydrogenolysis, in Biobased
Monomers, Polymers, and Materials, American Chemical
Society, 2012, vol. 1105, pp. 183–196.
4 V. Gevorgyan, J.-X. Liu, M. Rubin, S. Benson and
Y. Yamamoto, A novel reduction of alcohols and ethers
suggest that this silyl ether can undergo further cleavage to
methane.
18 P. G. M. Wuts, T. W. Greene and T. W. Greene, in Greene’s
protective groups in organic synthesis, John Wiley & Sons,
Inc., Hoboken, New Jersey, 5th edn, 2014, p. 1360.
with a HSiEt3/catalytic B(C6F5)3 system, Tetrahedron Lett., 19 K. C. Nicolaou, H. J. Mitchell, N. F. Jain, N. Winssinger,
1999, 40(50), 8919–8922.
R. Hughes and T. Bando, Total Synthesis of Vancomycin,
5 L. L. Adduci, M. P. McLaughlin, T. A. Bender, J. J. Becker and
Angew. Chem., Int. Ed., 1999, 38(1–2), 240–244.
M. R. Gagné, Metal-Free Deoxygenation of Carbohydrates, 20 T. Traoré, L. Delacour, S. Garcia-Argote, P. Berthault,
Angew. Chem., Int. Ed., 2014, 53(6), 1646–1649.
6 T. A. Bender, J. A. Dabrowski, H. Y. Zhong and
M. R. Gagné, Diastereoselective B(C6F5)3-Catalyzed
J.-C. Cintrat and B. Rousseau, Scalable Synthesis of
Cryptophane-1.1.1 and its Functionalization, Org. Lett.,
2010, 12(5), 960–962.
Reductive Carbocyclization of Unsaturated Carbohydrates, 21 O. Andrey, J. Sperry, U. S. Larsen and M. A. Brimble, An
Org. Lett., 2016, 18(16), 4120–4123.
7 T. A. Bender, J. A. Dabrowski and M. R. Gagné, Delineating
The Multiple Roles of B(C6F5)3 in the Chemoselective
approach to an enantioselective synthesis of crisamicin A
via a novel double Hauser–Kraus annulation strategy,
Tetrahedron, 2008, 64(18), 3912–3927.
Deoxygenation of Unsaturated Polyols, ACS Catal., 2016, 22 E. Quesada, M. Stockley, J. P. Ragot, M. E. Prime,
6(12), 8399–8403.
8 N. Drosos and B. Morandi, Boron-Catalyzed Regioselective
Deoxygenation of Terminal 1,2-Diols to 2-Alkanols Enabled
A. C. Whitwood and R. J. K. Taylor, A versatile, non-bio-
mimetic route to the preussomerins: syntheses of ( )-preus-
somerins F, K and L, Org. Biomol. Chem., 2004, 2(17), 2483–
2495.
by the Strategic Formation of
a
Cyclic Siloxane
Intermediate, Angew. Chem., Int. Ed., 2015, 54, 8814–8818.
9 D. Nikolaos and M. Bill, Boron-Catalyzed Regioselective
Deoxygenation of Terminal 1,2-Diols to 2-Alkanols Enabled
23 J. Yang and M. Brookhart, Iridium-Catalyzed Reduction of
Alkyl Halides by Triethylsilane, J. Am. Chem. Soc., 2007,
129(42), 12656–12657.
by the Strategic Formation of a Cyclic Siloxane Intermediate, 24 B. Marciniec, H. Maciejewski, C. Pietraszuk and P. Pawluć,
Angew. Chem., Int. Ed., 2015, 54(30), 8814–8818.
10 L. Monsigny, E. Feghali, J. C. Berthet and T. Cantat,
Efficient reductive depolymerization of hardwood and soft-
Hydrosilylation and Related Reactions of Silicon
Compounds, in Applied Homogeneous Catalysis with
Organometallic Compounds, 2017.
wood lignins with Brookhart’s iridium((III)) catalyst and 25 S. Park and M. Brookhart, Hydrosilylation of Carbonyl-
hydrosilanes, Green Chem., 2018, 20(9), 1981–1986.
11 M. P. McLaughlin, L. L. Adduci, J. J. Becker and M. R. Gagné,
Iridium-Catalyzed Hydrosilylative Reduction of Glucose to
Hexane(s), J. Am. Chem. Soc., 2013, 135(4), 1225–1227.
Containing Substrates Catalyzed by an Electrophilic η1-
Silane Iridium(III) Complex, Organometallics, 2010, 29(22),
6057–6064.
26 See the ESI† for further detail.
12 T. T. Metsänen, P. Hrobárik, H. F. T. Klare, M. Kaupp and 27 T. Robert and M. Oestreich, SiH Bond Activation: Bridging
M. Oestreich, Insight into the Mechanism of Carbonyl
Hydrosilylation Catalyzed by Brookhart’s Cationic Iridium(III)
Pincer Complex, J. Am. Chem. Soc., 2014, 136(19), 6912–6915.
Lewis Acid Catalysis with Brookhart’s Iridium(III) Pincer
Complex and B(C6F5)3, Angew. Chem., Int. Ed., 2013, 52(20),
5216–5218.
13 J. Yang, P. S. White and M. Brookhart, Scope and Mechanism 28 M. Loza, J. W. Faller and R. H. Crabtree, Seven-Coordinate
of the Iridium-Catalyzed Cleavage of Alkyl Ethers with
Iridium(V) Polyhydrides with Chelating Bis(silyl) Ligands,
Triethylsilane, J. Am. Chem. Soc., 2008, 130(51), 17509–17518.
Inorg. Chem., 1995, 34(11), 2937–2941.
14 X. L. Luo and R. H. Crabtree, Homogeneous catalysis of 29 Q. Zhang, A. Liu, H. Z. Yu and Y. Fu, Hydride Source
silane alcoholysis via nucleophilic attack by the alcohol on
an Ir(η2-HSiR3) intermediate catalyzed by [IrH2S2(PPh3)2]
SbF6 (S = solvent), J. Am. Chem. Soc., 1989, 111(7), 2527–
2535.
in Ethers Hydrosilylation Reaction Catalyzed by
Brookhart’s Ir(III) Pincer Complex, Acta Chim. Sin., 2018,
76(2), 113–120.
30 S. J. Connelly, W. Kaminsky and D. M. Heinekey, Structure
and Solution Reactivity of (Triethylsilylium)triethylsilane
Cations, Organometallics, 2013, 32(24), 7478–7481.
15 S. M. Chapp and N. D. Schley, Evidence for Reversible
Cyclometalation in Alkane Dehydrogenation and C–O Bond
Cleavage
at
Iridium
Bis(phosphine)
Complexes, 31 J. A. Widegren and R. G. Finke, A review of the problem of
distinguishing true homogeneous catalysis from soluble or
Organometallics, 2017, 36(22), 4355–4358.
16 Y. Zhang, B. R. J. Mueller and N. D. Schley, Formation of a
Delocalized Iridium Benzylidene with Azaquinone Methide
Character via Alkoxycarbene Cleavage, Organometallics,
2018, 37(12), 1825–1828.
17 Modest NMR yields of triethyl(methoxy)silane at full con-
version of starting material (Table 1, entries 3 and 4) may
other metal-particle heterogeneous catalysis under redu-
cing conditions, J. Mol. Catal. A: Chem., 2003, 198(1), 317–
341.
32 R. H. Crabtree, Resolving Heterogeneity Problems and
Impurity Artifacts in Operationally Homogeneous Transition
Metal Catalysts, Chem. Rev., 2012, 112(3), 1536–1554.
This journal is © The Royal Society of Chemistry 2018
Org. Biomol. Chem.