T.W. Chung, F. Turecˇek / International Journal of Mass Spectrometry 306 (2011) 99–107
107
plexes of complementary c and z fragments, as studied previously
[19].
instrument. Research support by the NSF (Grant CHE-0750048) is
gratefully appreciated.
CID of long-lived (M+2H)•+ cation-radicals showed radical-
competed with proton-driven losses of water, ammonia, and back-
bone dissociations forming b and y fragment ions. The loss of
C4H6N2 upon CID is thought to originate from rearranged (M+2H)•+
charge-reduced ions according to Scheme 1 [3–6] and the extent of
this fragmentation can presumably be taken as a marker for the
population of rearranged ions. The rearrangement occurs in the
imidazole ring, requires an internal catalysis by a proton donor,
and results in a stabilization of the charge-reduced ion [3–6].
The tryptic peptides from histatin 5 contain basic residues at the
C-terminus and 1–3 histidine residues. In keeping with previ-
ous studies of histidine-containing peptide ions, we presume that
the doubly charged ions are protonated at the C-terminal basic
amino acid (Lys or Arg) and at one of the His residues. In charge-
reduced (DHSAK+2H)•+, the His rearrangement can be catalyzed
by the Asp or C-terminal COOH groups; accordingly, the loss of
C4H6N2 is a dominant fragmentation channel. In contrast, charge-
reduced (FHEK+2H)•+ shows less abundant loss of C4H6N2 which
we interpret as less efficient histidine rearrangement due to a lower
accessibility to the COOH group.
References
[1] J.E.P. Syka, J.J. Coon, M.J. Schroeder, J. Shabanowitz, D.F. Hunt, Proc. Natl. Acad.
Sci. U.S.A. 101 (2004) 9528.
[2] Y. Xia, H.P. Gunawardena, D.E. Erickson, S.A. McLuckey, J. Am. Chem. Soc. 129
(2007) 12232.
[3] F. Turecˇek, T.W. Chung, C.L. Moss, J.A. Wyer, A. Ehlerding, H. Zettergren, S.B.
Nielsen, P. Hvelplund, J. Chamot-Rooke, B. Bythell, B. Paizs, J. Am. Chem. Soc.
132 (2010) 10728.
[4] F. Turecˇek, C. Yao, Y.M.E. Fung, S. Hayakawa, M. Hashimoto, H. Matsubara, J.
Phys. Chem. B 113 (2009) 7347.
[5] F. Turecek, J.W. Jones, T. Towle, S. Panja, S.B. Nielsen, P. Hvelplund, B. Paizs, J.
Am. Chem. Soc. 130 (2008) 14584.
[6] F. Turecˇek, S. Panja, J.A. Wyer, A. Ehlerding, H. Zettergen, S.B. Nielsen, P.
Hvelplund, B. Bythell, B. Paizs, J. Am. Chem. Soc. 131 (2009) 16472.
[7] (a) P.M. Curtis, B.W. Williams, R.F. Porter, Chem. Phys. Lett. 65 (1979) 296;
(b) P.C. Burgers, J.L. Holmes, A.A. Mommers, J.K. Terlouw, Chem. Phys. Lett. 102
(1983) 1;
(c) P.O. Danis, C. Wesdemiotis, F.W. McLafferty, J. Am. Chem. Soc. 105 (1983)
7454.
[8] For recent reviews see;;
(a) F. Turecek, Top. Curr. Chem. 225 (2003) 77;
(b) D.V. Zagorevskii, in: J.A. McCleverty, T.J. Meyer (Eds.), Comprehensive Coor-
dination Chemistry II, Elsevier, Oxford, 2004, p. 381;
(c) F. Turecek, in: P.B. Armentrout (Ed.), Encyclopedia of Mass Spectrometry,
vol. 1, Elsevier, Amsterdam, 2003, p. 528 (Chapter 7);
(d) D.V. Zagorevskii, Coord. Chem. Rev. 225 (2002) 5;
(e) P. Gerbaux, C. Wentrup, R. Flammang, Mass Spectrom. Rev. 19 (2000)
367;
(f) D.V. Zagorevskii, J.L. Holmes, Mass Spectrom. Rev. 18 (1999) 87;
(g) C. Schalley, G. Hornung, D. Schröder, H. Schwarz, Chem. Soc. Rev. 27 (1998)
91.
Increasing the number of His residues in (HHGYK+2H)•+ and
(HHSHR+2H)•+ promotes the loss of C4H6N2. The backbone frag-
mentations upon CID-MS4 of the m/z 560 ion from HHGYK then
suggest that the loss of C4H6N2 had occurred from either His
residue. This indicates a statistical effect whereby either His residue
is protonated in the precursor ions and then undergoes a rearrange-
ment in the charge-reduced ion. We also note that charge-reduced
peptide ions that lack histidine residues undergo different dissoci-
ations, as studied recently [20].
[9] D. Schröder, in: P.B. Armentrout (Ed.), Encyclopedia of Mass Spectrometry, vol.
1, Elsevier, Amsterdam, 2004, pp. 521–528 (Chapter 8).
[10] S. Hayakawa, J. Mass Spectrom. 39 (2004) 111.
[11] P. Hvelplund, B. Liu, S.B. Nielsen, S. Panja, J.C. Poully, K. Støchkel, Int. J. Mass
Spectrom. 263 (2007) 66.
[12] V.Q. Nguyen, F. Turecek, J. Mass Spectrom. 31 (1996) 1173.
[13] F.G. Oppenheim, T. Xu, F.M. McMillian, S.M. Levitz, R.D. Diamond, G.D. Offner,
R.F. Troxler, J. Biol. Chem. 263 (1988) 7472.
[14] E.J. Helmerhorst, R.F. Troxler, F.G. Oppenheim, Proc. Natl. Acad. Sci. U.S.A. 98
(2001) 14637.
5. Conclusions
Histidine-rich tryptic peptides from histatin 5 form abundant
charge-reduced, non-dissociating cation-radicals upon electron
transfer. CID of the charge-reduced ions triggers elimination of
C4H6N2 which depends on the peptide sequence and is amplified
in peptide ions containing two or three His residues. This amplified
histidine effect is interpreted by facile internal rearrangement in
His radicals to form intermediates which are prone for the C4H6N2
elimination.
[15] N. Leymarie, C.E. Costello, P.B. O’Connor, J. Am. Chem. Soc. 125 (2003) 8949.
[16] Y.M.E. Fung, T.-W.D. Chan, J. Am. Soc. Mass Spectrom. 16 (2005) 1523.
[17] (a) T. Ly, R.R. Julian, J. Am. Soc. Mass Spectrom. 20 (2009) 1148;
(b) Q. Sun, H. Nelson, T. Ly, B.M. Stoltz, R.R. Julian, J. Proteome Res. 8 (2009)
958.
[18] T.W. Chung, F. Turecˇek, J. Am. Soc. Mass Spectrom. 21 (2010) 1279.
[19] (a) C. Lin, P.B. O’Connor, J.J. Cournoyer, J. Am. Soc. Mass Spectrom. 17 (2006)
1605;
(b) P.B. O’Connor, C. Lin, J.J. Cournoyer, J.L. Pittman, M. Belyayev, B.A. Budnik, J.
Am. Soc. Mass Spectrom. 17 (2006) 576;
(c) R.A. Zubarev, D.M. Horn, E.K. Fridriksson, N.L. Kelleher, N.A. Kruger, M.A.
Lewis, B.K. Carpeneter, F.W. McLafferty, Anal. Chem. 72 (2000) 563.
[20] H. Ben Hamidane, D. Chiappe, R. Hartmer, A. Vorobyev, M. Moniatte, Y.O. Tsybin,
J. Am. Soc. Mass Spectrom. 20 (2009) 567.
Acknowledgements
Thanks are due to Dr. Priska von Haller of the University of Wash-
ington Proteomics Resource Center for access to the Thermo LTQ XL