Organic Letters
Letter
760. (d) Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258−297.
(e) Sundararaju, B.; Achard, M.; Bruneau, C. Chem. Soc. Rev. 2012,
41, 4467−4483. (f) Haydl, A. M.; Breit, B.; Liang, T.; Krische, M. J.
Angew. Chem., Int. Ed. 2017, 56, 11312−11325. (g) Noreen, S.; Fawad
Zahoor, A.; Ahmad, S.; Shahzadi, I.; Irfan, A.; Faiz, S. Curr. Org. Chem.
2019, 23, 1168−1213.
(g) Jiang, W.; Li, Y.; Wang, Z.-H. Acc. Chem. Res. 2014, 47, 3135−
3147. (h) Guo, Y.-R.; Cao, Q.-D.; Hong, Z.-S.; Tan, Y.-Y.; Chen, S.-
D.; Jin, H.-J.; Tan, K.-S.; Wang, D.-Y.; Yan, Y. Military Med. Res. 2020,
7, 11.
(9) Olofson, R. A.; Martz, J. T.; Senet, J.-P.; Piteau, M.; Malfroot, T.
J. Org. Chem. 1984, 49, 2081−2082.
(10) Yu, M.; Xie, Y.; Xie, C.; Zhang, Y. Org. Lett. 2012, 14, 2164−
(2) For selected examples of allylic substitution reactions, see:
(a) Jellerichs, B. G.; Kong, J.-R.; Krische, M. J. J. Am. Chem. Soc. 2003,
125, 7758−7759. (b) Kinoshita, H.; Shinokubo, H.; Oshima, K. Org.
Lett. 2004, 6, 4085−4088. (c) Nemoto, T.; Matsumoto, T.; Masuda,
T.; Hitomi, T.; Hatano, K.; Hamada, Y. J. Am. Chem. Soc. 2004, 126,
3690−3691. (d) Mohr, J. T.; Behenna, D. C.; Harned, A. M.; Stoltz,
B. M. Angew. Chem., Int. Ed. 2005, 44, 6924−6927. (e) Ibrahem, I.;
2167.
(11) Xie, Y.; Hu, J.; Wang, Y.; Xia, C.; Huang, H. J. Am. Chem. Soc.
2012, 134, 20613−20616.
(12) (a) Hu, J.; Xie, Y.; Huang, H. Angew. Chem., Int. Ed. 2014, 53,
7272−7276. (b) Qin, G.; Li, L.; Li, J.; Huang, H. J. Am. Chem. Soc.
2015, 137, 12490−12493. (c) Liu, Y.; Xie, Y.; Wang, H.; Huang, H. J.
Am. Chem. Soc. 2016, 138, 4314−4317. (d) Li, L.; Liu, P.; Su, Y.;
Huang, H. Org. Lett. 2016, 18, 5736−5739. (e) Li, L.; Zhou, X.; Yu,
B.; Huang, H. Org. Lett. 2017, 19, 4600−4603. (f) Qi, X.; Liu, S.; Lan,
Y. Organometallics 2016, 35, 1582−1585. (g) Qiao, C.; Chen, A.; Gao,
B.; Liu, Y.; Huang, H. Chin. J. Chem. 2018, 36, 929−933.
́
Cordova, A. Angew. Chem., Int. Ed. 2006, 45, 1952−1956. (f) Bravo-
Altamirano, K.; Montchamp, J.-L. Org. Lett. 2006, 8, 4169−4171.
(g) Behenna, D. C.; Liu, Y.; Yurino, T.; Kim, J.; White, D. E.; Virgil, S.
C.; Stoltz, B. M. Nat. Chem. 2012, 4, 130−133. (h) Li, Y.-X.; Xuan,
Q.-Q.; Liu, L.; Wang, D.; Chen, Y.-J.; Li, C.-J. J. Am. Chem. Soc. 2013,
135, 12536−12539.
(3) For selected reviews of the metallo-ene reaction, see:
(a) Oppolzer, W. In Comprehensive Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Pergamon: Oxford, U.K., 1991; Vol. 5, Chapter 1.2.
(b) Oppolzer, W. In Comprehensive Organometallic Chemistry II; Abel,
E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford, U.K.,
1995; Vol. 12, Chapter 8.3. (c) Oppolzer, W. Angew. Chem., Int. Ed.
Engl. 1989, 28, 38−52. (d) Oppolzer, W. Pure Appl. Chem. 1990, 62,
1941−1948. (e) Heumann, A.; Reglier, M. Tetrahedron 1995, 51,
975−1015. (f) Yadav, S.; Ramasastry, S. S. V. Chem. - Asian J. 2020,
15, 2764−2774.
(4) For selected examples of metallo-ene reaction, see: (a) Oppolzer,
W.; Pitteloud, R.; Strauss, H. F. J. Am. Chem. Soc. 1982, 104, 6476−
6477. (b) Trost, B. M.; Lautens, M. J. Am. Chem. Soc. 1985, 107,
1781−1783. (c) Gomez-Bengoa, E.; Cuerva, J. M.; Echavarren, A. M.;
Martorell, G. Angew. Chem., Int. Ed. Engl. 1997, 36, 767−769.
(d) Tsukada, N.; Sugawara, S.; Inoue, Y. Org. Lett. 2000, 2, 655−657.
(e) Michelet, V.; Galland, J.-C.; Charruault, L.; Savignac, M.; Genet,
J.-P. Org. Lett. 2001, 3, 2065−2067. (f) Campana, A. G.; Bazdi, B.;
Fuentes, N.; Robles, R.; Cuerva, J. M.; Oltra, J. E.; Porcel, S.;
Echavarren, A. M. Angew. Chem., Int. Ed. 2008, 47, 7515−7519.
(g) Liang, H.; Yan, F.; Dong, X.; Liu, Q.; Wei, X.; Liu, S.; Dong, Y.;
Liu, H. Chem. Commun. 2017, 53, 3138−3141. (h) Bankar, S. K.;
Singh, B.; Tung, P.; Ramasastry, S. S. V. Angew. Chem., Int. Ed. 2018,
57, 1678−1682. (i) Yadav, S.; Hazra, R.; Singh, A.; Ramasastry, S. S.
V. Org. Lett. 2019, 21, 2983−2987. (j) Singh, B.; Bankar, S. K.;
Kumar, K.; Ramasastry, S. S. V. Chem. Sci. 2020, 11, 4948−4953.
(5) For a leading review of migratory insertion, see: (a) Cavell, K. J.
Coord. Chem. Rev. 1996, 155, 209−243. For selective reports of
migratory insertion, see: (b) Mecking, S.; Johnson, L. K.; Wang, L.;
Brookhart, M. J. Am. Chem. Soc. 1998, 120, 888−899. (c) Tye, J. W.;
Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 14703−14712. (d) Hanley,
P. S.; Hartwig, J. F. J. Am. Chem. Soc. 2011, 133, 15661−15673.
(e) Xie, Y.; Hu, J.; Xie, P.; Qian, B.; Huang, H. J. Am. Chem. Soc.
2013, 135, 18327−18330.
(6) Zhang, Y.; Yu, B.; Gao, B.; Zhang, T.; Huang, H. Org. Lett. 2019,
21, 535−539.
(7) (a) Nishimura, T.; Makino, H.; Nagaosa, M.; Hayashi, T. J. Am.
Chem. Soc. 2010, 132, 12865−12867. (b) Wang, M.; Liu, Z.-L.;
Zhang, X.; Tian, P.-P.; Xu, Y.-H.; Loh, T.-P. J. Am. Chem. Soc. 2015,
137, 14830−14833.
(8) (a) Bringmann, G.; Ochse, M.; Schupp, O.; Tasler, S. In Progress
in the Chemistry of Organic Natural Products; Herz, W., Falk, H., Kirby,
G. W., Moore, R. E., Tamm, C., Eds.; Springer: New York, 2001; Vol.
̈
̈
82, p 1. (b) Watson, M. D.; Fechtenkotter, A.; Mullen, K. Chem. Rev.
2001, 101, 1267−1300. (c) Dai, J.; Liu, Y.; Zhou, Y.-D.; Nagle, D. G.
J. Nat. Prod. 2007, 70, 1824−1826. (d) Reddy, R. A.; Baumeister, U.;
Keith, C.; Tschierske, C. J. Mater. Chem. 2007, 17, 62−75.
(e) Anthony, J. E. Angew. Chem., Int. Ed. 2008, 47, 452−483.
(f) Shibasaki, M.; Matsunaga, S. BINOL. In Privileged Chiral Ligands
and Catalysts; Zhou, Q.-L., Ed.; Wiley: New York, 2011; pp 295−332.
E
Org. Lett. XXXX, XXX, XXX−XXX