10.1002/anie.201709144
Angewandte Chemie International Edition
COMMUNICATION
dinuclear alkenyl copper complexes, in which metal centers do
not interact with the alkene and instead form a three-center-two-
electron bond with the alkenyl carbon. This structural difference
is consistent with the difference in reactivity of two types of
dinuclear complexes. The nonsymmetrical configuration of the
dinuclear allyl copper complex with the σ-bonded allyl copper
fragment offers a plausible explanation for the much higher
reactivity of these complexes towards alkyl triflates relative to
the reactivity of analogous alkenyl complexes.
The results of our studies of the hydroalkylation of allenes and
alkynes point to several important differences in the reactivity of
these classes of compounds. First, while the hydrocupration of
allenes by SIPrCuH is faster than the reduction of alkyl triflates,
the opposite is true for the reaction of alkynes. This is in line with
the generally higher reactivity of allenes. The second difference
is the much higher reactivity of dinuclear [(SIPrCu)2(µ-allyl)]OTf
complexes, which react with alkyl triflates. The analogous
[(NHCCu)2(µ-alkenyl)]OTf complexes do not react with alkyl
triflates under a wide range of reaction conditions. These
differences in the reactivity of allenes and alkynes point to
opportunities for taking different approaches to the development
of reactions for their hydrofunctionalization.
a)
b)
Acknowledgements
Financial support by NSF is greatfully aknowldeged (CAREER
Award #1254636). Karl Haelsig is anknoweledged for providing
preliminary results for this project.
Keywords: allene 1 • copper 2 • catalysis 3 • alkylation 4 •
cross-coupling 5
[1]
For a general disccusion of benefits associated with methods that avoid
preformation of organometallic intermediates and other methods for
preactivation of organic substrates, see: (a) S. B. Han, I. S. Kim, M. J.
Krische, Chem. Commun. 2009, 7278-7287; (b) J. Feng, Z. A. Kasun,
M. J. Krische, J. Am. Chem. Soc. 2016, 138, 5467-5478.
[2]
(a) E. Oblinger, J. Montgomery, J. Am. Chem. Soc. 1997, 119, 9065-
9066; (b) K. M. Miller, W.-S. Huang, T. F. Jamison, J. Am. Chem. Soc.
2003, 125, 3442-3443; (c) G. M. Mahandru, G. Liu, J. Montgomery, J.
Am. Chem. Soc. 2004, 126, 3698-3699; (d) J. Montgomery, G.
Sormunen, in Metal Catalyzed Reductive C–C Bond Formation, Vol.
279 (Ed.: M. Krische), Springer Berlin Heidelberg, 2007, pp. 1-23; (e) H.
A. Malik, G. J. Sormunen, J. Montgomery, J. Am. Chem. Soc. 2010,
132, 6304-6305; (f) R. L. Patman, M. R. Chaulagain, V. M. Williams, M.
J. Krische, J. Am. Chem. Soc. 2009, 131, 2066-2067; (g) J. C. Leung,
R. L. Patman, B. Sam, M. J. Krische, Chem. Eur. J. 2011, 17, 12437-
12443; (h) K. Takai, S. Sakamoto, T. Isshiki, Org. Lett. 2003, 5, 653-
655; (i) O. Kenichi, T. Ayumi, S. Daisuke, F. Shin-ichi, Chemistry
Letters 2012, 41, 157-158; (j) H. Wang, G. Lu, G. J. Sormunen, H. A.
Malik, P. Liu, J. Montgomery, J. Am. Chem. Soc. 2017, 139, 9317-9324.
M.-Y. Ngai, A. Barchuk, M. J. Krische, J. Am. Chem. Soc. 2006, 129,
280-281.
c)
[3]
[4]
For representative examples, see: (a) C.-Y. Zhou, S.-F. Zhu, L.-X.
Wang, Q.-L. Zhou, J. Am. Chem. Soc. 2010, 132, 10955-10957; (b) Y.
Yang, I. B. Perry, S. L. Buchwald, J. Am. Chem. Soc. 2016, 138, 9787-
9790; (c) A. Barchuk, M.-Y. Ngai, M. J. Krische, J. Am. Chem. Soc.
2007, 129, 8432-8433; (d) E. Skucas, J. R. Kong, M. J. Krische, J. Am.
Chem. Soc. 2007, 129, 7242-7243; (e) J.-R. Kong, C.-W. Cho, M. J.
Krische, J. Am. Chem. Soc. 2005, 127, 11269-11276; (f) S. J. Patel, T.
F. Jamison, Angew. Chem., Int. Ed. 2003, 42, 1364-1367; (g) S. Zhu, X.
Lu, Y. Luo, W. Zhang, H. Jiang, M. Yan, W. Zeng, Org. Lett. 2013, 15,
1440-1443; (h) M.-Y. Ngai, A. Barchuk, M. J. Krische, J. Am. Chem.
Soc. 2007, 129, 12644-12645.
[5]
[6]
(a) C.-C. Wang, P.-S. Lin, C.-H. Cheng, J. Am. Chem. Soc. 2002, 124,
9696-9697; (b) W. Li, A. Herath, J. Montgomery, J. Am. Chem. Soc.
2009, 131, 17024-17029; (c) C.-H. Wei, S. Mannathan, C.-H. Cheng, J.
Am. Chem. Soc. 2011, 133, 6942-6944.
For representative examples, see: (a) F. Shibahara, J. F. Bower, M. J.
Krische, J. Am. Chem. Soc. 2008, 130, 6338-6339; (b) R. L. Patman, V.
M. Williams, J. F. Bower, M. J. Krische, Angew. Chem., Int. Ed. 2008,
47, 5220-5223; (c) F. Shibahara, J. F. Bower, M. J. Krische, J. Am.
Chem. Soc. 2008, 130, 14120-14122; (d) J. R. Zbieg, E. L. McInturff, M.
J. Krische, Org. Lett. 2010, 12, 2514-2516; (e) J. R. Zbieg, E. L.
McInturff, J. C. Leung, M. J. Krische, J. Am. Chem. Soc. 2011, 133,
Figure 2. X-ray crystal structure of complex 27. The counterion and most
hydrogen atoms were removed for clarity a) schematics of complex 27. b)
ORTEP of the minor configuration with thermal ellipsoids at 40% probability
level. c) ORTEP of the major configuration with thermal ellipsoids at 40%
probability level.
This article is protected by copyright. All rights reserved.