CrystEngComm
Paper
V
=
1037.85(9) Å3,
Z
=
1, P1, Dc
=
1.788
g
cm−3,
6 T. Hasegawa, K. Inukai, S. Kagoshima, T. Sugawara,
T. Mochida, S. Sugiura and Y. Iwasa, Synth. Met., 1997, 86,
1801–1802.
7 (a) J. D. Dunitz, A. Karrer and J. D. Wallis, Helv. Chim. Acta,
1986, 69, 69–70; (b) B. Chen, F. Deilacher, M. Hoch,
H. J. Keller, P. Wu, P. Armbruster, R. Geiger, S. Kahlich and
D. Schweitzer, Synth. Met., 1991, 42, 2101–2105; (c) S. Matsumiya,
A. Izuoka, T. Sugawara, T. Taruishi and Y. Kawada, Bull. Chem.
Soc. Jpn., 1993, 66, 513–522.
8 A. Karrer, J. D. Wallis, J. D. Dunitz, B. Hilti, C. W. Mayer,
M. Bürkle and J. Pfeiffer, Helv. Chim. Acta, 1987, 70, 942–953.
9 F. Pop, S. Laroussi, T. Cauchy, C. J. Gómez-García,
J. D. Wallis and N. Avarvari, Chirality, 2013, 25, 466–474.
10 (a) G. L. J. A. Rikken, J. Fölling and P. Wyder, Phys. Rev.
Lett., 2001, 87, 236602; (b) V. Krstic, S. Roth, M. Burghard,
K. Kern and G. L. J. A. Rikken, J. Chem. Phys., 2002, 117,
11315–11319.
11 N. Avarvari and J. D. Wallis, J. Mater. Chem., 2009, 19,
4061–4076.
12 S. Yang, A. C. Brooks, L. Martin, P. Day, M. Pilkington,
W. Clegg, R. W. Harrington, L. Russo and J. D. Wallis,
Tetrahedron, 2010, 66, 6977–6989.
13 (a) C. Réthoré, M. Fourmigué and N. Avarvari, Chem.
Commun., 2004, 1384–1385; (b) C. Réthoré, M. Fourmigué
and N. Avarvari, Tetrahedron, 2005, 61, 10935–10942; (c)
C. Réthoré, N. Avarvari, E. Canadell, P. Auban-Senzier and
M. Fourmigué, J. Am. Chem. Soc., 2005, 127, 5748–5749; (d)
C. Réthoré, A. Madalan, M. Fourmigué, E. Canadell,
E. B. Lopes, M. Almeida, R. Clérac and N. Avarvari, New J.
Chem., 2007, 31, 1468–1483; (e) A. M. Madalan, C. Réthoré,
M. Fourmigué, E. Canadell, E. B. Lopes, M. Almeida,
P. Auban-Senzier and N. Avarvari, Chem.–Eur. J., 2010, 16,
528–537.
μ(MoKα) = 1.521 mm−1, T = 293(2) K, 6904 unique reflections,
6441 with F > 4σ(F), Flack parameter: 0.006(19), R = 0.037,
wR = 0.088.
[(rac)-5]2SbF6. Crystal data for [(rac)-5]2SbF6: C28H32SbS16F6,
Mr
= 1117.25, triclinic, a = 6.8720(6), b = 8.2521(4),
c = 19.4369(12) Å, α = 84.441(4), β = 84.474(5), γ = 71.056(5)°,
V
=
1035.17(12) Å3,
Z
=
1, P1, Dc
=
1.792
g
cm−3,
¯
μ(MoKα) = 1.525 mm−1, T = 293(2) K, 4363 unique reflections,
3839 with F > 4σ(F), R = 0.040, wR = 0.090.
Resistivity measurements
For the charge transfer salts, two-probe DC transport mea-
surements were made on several crystals of each salt using a
HUSO HECS 994C multi-channel conductometer. Gold wires
(15 μm diameter) were attached to the crystal, and the attached
wires were connected to an eight-pin integrated circuit plug
with gold conductive cement. The machine had an upper limit
for resistance measurement of 1.2 MOhm.
For the radical cation salts [5]2XF6 (X = As, Sb), four-probe
transport measurements were performed on crystals of each
salt using an AC technique with an applied current Iac = 1 μA
and low-frequency lock-in detection. Annular contacts were
made by gold evaporation on which gold wires were attached
with silver paste. Low temperature was achieved using a
cryocooler equipment.
Acknowledgements
We thank the EPSRC for grant EP/C510488/1 and for a stu-
dentship, the EPSRC National Crystallography Service for
datasets, and the EPSRC Mass Spectrometry Service for mea-
surements. The work has benefited from support from the
ESF COST action D35. This work was supported in France by
the National Agency for Research (ANR, Project 09-BLAN-
0045-01), the CNRS, the University of Angers and the Ministry
of Education and Research (grant to C.M.).
14 (a) F. Riobé and N. Avarvari, Chem. Commun., 2009, 3753–3755;
(b) F. Riobé and N. Avarvari, Coord. Chem. Rev., 2010, 254,
1523–1533.
15 (a) J. D. Wallis and J.-P. Griffiths, J. Mater. Chem., 2005, 15,
347–365; (b) J.-P. Griffiths, H. Nie, R. J. Brown, P. Day and
J. D. Wallis, Org. Biomol. Chem., 2005, 3, 2155–2166.
16 (a) M. Chas, M. Lemarié, M. Gulea and N. Avarvari, Chem.
Commun., 2008, 220–222; (b) M. Chas, F. Riobé, R. Sancho,
C. Minguíllon and N. Avarvari, Chirality, 2009, 21, 818–825.
17 S. Yang, A. C. Brooks, L. Martin, P. Day, H. Li, P. Horton,
L. Male and J. D. Wallis, CrystEngComm, 2009, 11, 993–996.
18 (a) R. Gómez, J. L. Segura and N. Martin, J. Org. Chem.,
2000, 65, 7566–7574; (b) Y. Zhou, D. Zhang, L. Zhu, Z. Shuai
and D. Zhu, J. Org. Chem., 2006, 71, 2123–2130; (c) A. Saad,
F. Barrière, E. Levillain, N. Vanthuyne, O. Jeannin and
M. Fourmigué, Chem.–Eur. J., 2010, 16, 8020–8028; (d)
A. Saad, O. Jeannin and M. Fourmigué, Tetrahedron, 2011,
67, 3820–3829; (e) A. Saad, O. Jeannin and M. Fourmigué,
New J. Chem., 2011, 35, 1004–1010.
References
1 J. Ferraris, D. O. Cowan, V. Walatka and J. H. Perlstein,
J. Am. Chem. Soc., 1973, 9, 948–949.
2 F. Toda and H Miyamoto, Chem. Lett., 1995, 861.
3 (a) H. Alves, A. S. Molinari, H. Xie and A. F. Morpurgo,
Nat. Mater., 2008, 7, 574–580; (b) J. E. Kirtley and J. Mannhart,
Nat. Mater., 2008, 7, 522–521; (c) S. Wen, W.-Q. Deng and
K.-L. Han, Chem. Commun., 2010, 46, 5133–5135.
4 F. Otón, V. Lloveras, M. Mas-Torrent, J. Vidal-Gancedo,
J. Veciana and C. Rovira, Angew. Chem., Int. Ed., 2011, 50,
10902–10906.
5 (a) G. Saito, H. Hayashi, T. Enoki and H. Inokuchi, Mol.
Cryst. Liq. Cryst., 1985, 120, 341–344; (b) T. Mori and
H. Inokuchi, Solid State Commun., 1986, 59, 355–359; (c)
T. Mori and H. Inokuchi, Bull. Chem. Soc. Jpn., 1987, 60,
402–404; (d) H. M. Yamamoto, M. Hagiwara and R. Kato,
Synth. Met., 2003, 133–134, 449–451.
19 (a) I. Danila, F. Riobé, J. Puigmartí-Luis, Á. Pérez del Pino,
J. D. Wallis, D. B. Amabilino and N. Avarvari, J. Mater.
Chem., 2009, 19, 4495–4504; (b) I. Danila, F. Riobé, F. Piron,
J. Puigmartí-Luis, J. D. Wallis, M. Linares, H. Ågren,
This journal is © The Royal Society of Chemistry 2014
CrystEngComm, 2014, 16, 3906–3916 | 3915