Table 3 1H NMR spectroscopic data for the compounds 5a–o and 7a–n
Compound
δH [200 MHz; (CD3)2SO; Me4Si]
5aa
5ba
3.29 (3 H, s, 6-Me), 4.06 (3 H, s, 1-Me), 7.53–7.65 (3 H, m, Ph-m,pH), 8.08–8.28 (2 H, m, Ph-oH)
1.48 (3 H, t, J 7.0, CH2CH3), 3.29 (3 H, s, 6-Me), 4.50 (2 H, q, J 7.0, CH2CH3), 7.50–7.72 (3 H, m, Ph-m,pH), 8.15–8.30 (2 H, m,
Ph-oH)
1.00 (3 H, t, J 7.0, [CH2]2CH3), 1.97 (2 H, pseudosextet, CH2CH2CH3), 3.29 (3 H, s, 6-Me), 4.42 (2 H, t, J 7.0, CH2CH2CH3), 7.50–7.70
(3 H, m, Ph-m,pH), 8.12–8.31 (2 H, m, Ph-oH)
0.95 (3 H, t, J 7.3, [CH2]3CH3), 1.41 (2 H, sex, J 7.3, [CH2]2CH2CH3), 1.90 (2 H, quin, J 7.4, CH2CH2CH2CH3), 3.27 (3 H, s, 6-Me),
4.45 (2 H, t, J 7.2, CH2[CH2]2CH3), 7.58–7.62 (3 H, m, Ph-m,pH), 8.18–8.21 (2 H, m, Ph-oH)
1.70–2.26 (8 H, m, cyclopentyl-H), 3.27 (3 H, s, 6-Me), 5.67 (1 H, pseudoquintet, cyclopentyl-H), 7.55–7.64 (3 H, m, Ph-m,pH),
8.14–8.23 (2 H, m, Ph-oH)
5ca
5d
5e
5f
1.13–2.06 (10 H, m, cyclohexyl-H), 3.27 (3 H, s, 6-Me), 5.10–5.28 (1 H, m, cyclohexyl-H), 7.56–7.66 (3 H, m, Ph-m,pH), 8.18–8.27
(2 H, m, Ph-oH)
1.50 (6 H, d, J 6.5, CH[CH3]2), 3.29 (3 H, s, 6-Me), 5.55 (1 H, quin, J 6.5, CH[CH3]2), 7.50–7.70 (3 H, m, Ph-m,pH), 8.15–8.37 (2 H,
m, Ph-oH)
5ga
5h
4.11 (3 H, s, 1-Me), 7.19–7.29 (2 H, m, 6-Ph-mH), 7.41–7.66 (6 H, 3-Ph-m,pH and 6-Ph-o,pH), 8.17–8.27 (2 H, m, 3-Ph-oH)
1.52 (3 H, t, J 7.1, CH2CH3), 4.55 (2 H, q, J 7.1, CH2CH3), 7.16–7.34 (2 H, m, 6-Ph-mH), 7.42–7.65 (6 H, m, 3-Ph-m,pH and 6-Ph-
o,pH), 8.12–8.34 (2 H, m, 3-Ph-oH)
5ia
5j
0.98 (3 H, t, J 7.3, [CH2]2CH3), 1.86 (2 H, sex, J 7.3, CH2CH2CH3), 3.96 (2 H, t, J 7.1, CH2CH2CH3), 7.46–7.55 (4 H, m, 3-Ph-pH
and 6-Ph-m,pH), 7.57–7.67 (2 H, m, 3-Ph-mH), 7.69–7.76 (2 H, m, 6-Ph-oH), 8.21–8.29 (2 H, m, 3-Ph-oH)
0.95 (3 H, t, J 7.3, [CH2]3CH3), 1.42 (2 H, sex, J 7.3, [CH2]2CH2CH3), 1.83 (2 H, quin, J 7.4, CH2CH2CH2CH3), 4.01 (2 H, t, J 7.1,
CH2[CH2]2CH3), 7.48–7.55 (4 H, m, 3-Ph-pH and 6-Ph-m,pH), 7.58–7.67 (2 H, m, 3-Ph-mH), 7.70–7.76 (2 H, m, 6-Ph-oH), 8.21–8.29
(2 H, m, 3-Ph-oH)
5k
5l
1.70–2.30 (8 H, m, cyclopentyl-H), 5.74 (1 H, pseudoquintet, cyclopentyl-H), 7.20–7.27 (2 H, m, 6-Ph-mH), 7.38–7.66 (6 H, m, 3-Ph-
m,pH and 6-Ph-o,p-H), 8.14–8.26 (2 H, m, 3-Ph-oH)
5m
5na
1.20–2.15 (10 H, m, cyclohexyl-H), 5.10–5.30 (1 H, m, cyclohexyl-H), 7.17–7.27 (2 H, m, 6-Ph-mH), 7.42–7.57 (6 H, m, 3-Ph-m,pH
and 6-Ph-o,pH), 8.15–8.29 (2 H, m, 3-Ph-oH)
1.54 (6 H, d, J 6.5, CH[CH3]2), 5.62 (1 H, quin, J 6.5, CH[CH3]2), 7.15–7.34 (2 H, m, 6-Ph-mH), 7.42–7.66 (6 H, m, 3-Ph-m,pH and
6-Ph-o,p-H), 8.14–8.38 (2 H, m, 3-Ph-oH)
1.89 (9 H, s, 3 × Me), 7.23–7.70 (8 H, m, 3-Ph-m,pH and 6-Ph-o,m,pH), 8.14–8.36 (2 H, m, 3-Ph-oH)
3.37 (3 H, s, 6-Me), 3.73 (3 H, s, 8-Me), 7.54–7.80 (3 H, m, Ph-m,pH), 8.34–8.56 (2 H, m, Ph-oH)
1.32 (3 H, t, J 7.0, CH2CH3), 3.37 (3 H, s, 6-Me), 4.42 (2 H, q, J 7.0, CH2CH3), 7.57–7.76 (3 H, m, Ph-m,pH), 8.35–8.57 (2 H, m,
Ph-oH)
5oa
7a
7ba
7c
7d
7e
7f
0.97 (3 H, t, J 7.4, [CH2]2CH3), 1.94 (2 H, sex, J 7.3, CH2CH2CH3), 3.35 (3 H, s, 6-Me), 4.31 (2 H, t, J 7.2, CH2CH2CH3), 7.58–7.64
(3 H, m, Ph-m,pH), 8.39–8.46 (2 H, m, Ph-oH)
0.94 (3 H, t, J 7.3, [CH2]3CH3), 1.41 (2 H, sex, J 7.3, [CH2]2CH2CH3), 1.71 (2 H, pseudoquintet, CH2CH2CH2CH3), 3.35 (3 H, s, 6-Me),
4.35 (2 H, t, J 7.3, CH2[CH2]2CH3), 7.58–7.64 (3 H, m, Ph-m,pH), 8.38–8.46 (2 H, m, Ph-oH)
1.60–1.75 (2 H, m, cyclopentyl-H), 1.88–2.10 (4 H, m, cyclopentyl-H), 2.14–2.30 (2 H, m, cyclopentyl-H), 3.34 (3 H, s, 6-Me), 5.86
(1 H, pseudoquintet, cyclopentyl-H), 7.59–7.64 (3 H, m, Ph-m,pH), 8.38–8.45 (2 H, m, Ph-oH)
1.18–1.56 (3 H, m, cyclohexyl-H), 1.65–1.96 (5 H, m, cyclohexyl-H), 2.40–2.63 (2 H, m, cyclohexyl-H), 3.33 (3 H, s, 6-Me), 5.31
(1 H, br pseudotriplet, cyclohexyl-H), 7.58–7.67 (3 H, m, Ph-m,pH), 8.38–8.47 (2 H, m, Ph-oH)
1.61 (6 H, d, J 7.0, CH[CH3]2), 3.35 (3 H, s, 6-Me), 5.65 (1 H, quin, J 7.0, CH[CH3]2), 7.55–7.70 (3 H, m, Ph-m,pH), 8.34–8.50
(2 H, m, Ph-oH)
7ga
7ha
7ia
3.75 (3 H, s, 8-Me), 7.23–7.74 (8 H, m, 3-Ph-m,pH and 6-Ph-o,m,pH), 8.36–8.57 (2 H, m, 3-Ph-oH)
1.36 (3 H, t, J 7.0, CH2CH3), 4.44 (2 H, q, J 7.0, CH2CH3), 7.23–7.76 (8 H, m, 3-Ph-m,pH and 6-Ph-o,m,pH), 8.34–8.60 (2 H, m,
3-Ph-oH)
7j
0.99 (3 H, t, J 7.4 [CH2]2CH3), 1.79 (2 H, sex, J 7.3, CH2CH2CH3), 4.34 (2 H, t, J 7.3, CH2CH2CH3), 7.30–7.36 (2 H, m, 6-Ph-mH),
7.46–7.56 (3 H, m, 6-Ph-o,pH), 7.60–7.66 (3 H, m, 3-Ph-m,pH), 8.41–8.48 (2 H, m, 3-Ph-oH)
0.94 (3 H, t, J 7.3, [CH2]3CH3), 1.43 (2 H, sex, J 7.3, [CH2]2CH2CH3), 1.75 (2 H, pseudoquintet, CH2CH2CH2CH3), 4.37 (2 H, t, J 7.3,
CH2[CH2]2CH3), 7.30–7.37 (2 H, m, 6-Ph-mH), 7.47–7.56 (3 H, m, 6-Ph-o,pH), 7.60–7.68 (3 H, m, 3-Ph-m,pH), 8.41–8.49 (2 H, m,
3-Ph-oH)
7k
7l
1.55–1.74 (2 H, m, cyclopentyl-H), 1.87–2.07 (4 H, m, cyclopentyl-H), 2.14–2.35 (2 H, m, cyclopentyl-H), 5.88 (1 H, br pseudotriplet,
cyclopentyl-H), 7.30–7.39 (2 H, m, 6-Ph-mH), 7.47–7.70 (6 H, m, 3-Ph-m,pH and 6-Ph-o,pH), 8.40–8.52 (2 H, m, 3-Ph-oH)
1.15–1.55 (3 H, m, cyclohexyl-H), 1.62–1.95 (5 H, m, cyclohexyl-H), 2.40–2.60 (2 H, m cyclohexyl-H), 5.31 (1 H, br pseudotriplet),
7.29–7.37 (2 H, m, 3-Ph-mH), 7.46–7.56 (3 H, m, 6-Ph-o,pH), 7.60–7.66 (3 H, m, 3-Ph-m,pH), 8.41–8.48 (2 H, m, 3-Ph-oH)
1.61 (6 H, d, J 7.0, CH[CH3]2), 5.65 (1 H, quin, J 7.0, CH[CH3]2), 7.22–7.80 (8 H, m, 3-Ph-m,pH and 6-Ph-o,m,pH), 8.34–8.60
(2 H, m, 3-Ph-oH)
7m
7na
a This compound was measured at 60 MHz.
under these conditions (runs 9–15). However, the dealkylation
of compounds 5d–g,k–o, even compound 5o possessing a
tert-alkyl group, by n-butylamine as a stronger nucleophile
took place easily, and the nucleophile itself is presumably
alkylated by the alkyl groups eliminated (runs 16–24). Previ-
ously, we have reported a possible reaction mechanism as
follows. That was, toxoflavin 1 and its 3-substituted derivatives
readily underwent demethylation with several nucleophiles
e.g. DMF and dimethylacetamide, to give the corresponding
Conclusion
Thus, we reported the first successful synthesis of 1-substituted
toxoflavin derivatives 5 by the regioselective alkylation of
reumycins 6, and this simple methodology provided a facile and
convenient route to the preparation of 1-alkyltoxoflavins 5
which are biologically more active than 8-alkylfervenulins 7.
Moreover, the rates of transalkylation from 1-alkyltoxoflavin
derivatives 5 into nucleophiles such as DMF and n-butylamine
to produce reumycins 6 were also determined.
1-demethyltoxoflavin (reumycin)
3 and its 3-substituted
derivatives and during the reactions novel radical species,
i.e. toxoflavin radical anions, were observed.10 On the other
hand, DMF or dimethylacetamide could be methylated into
reactive dimethylformamide ether or dimethylacetamide ether,
which is readily hydrolysed into methanol and the original
solvents.
Experimental
General
Mps were obtained on a Yanagimoto micro melting point
apparatus and were uncorrected. Microanalyses were measured
134
J. Chem. Soc., Perkin Trans. 1, 2001, 130–137