9302
Although the exact mechanism of the cycloaddition reaction is still not clear, some points
needs to be mentioned. (1) The direct formation of the dihydrofuran is suggested since
isomerization11 of an initially formed cyclopropane to a dihydrofuran is less likely. (2) The
stereochemical outcome suggests a mechanism involving a freely rotating intermediate. A
concerted mechanism seems to be ruled out.
In conclusion, thermal metal-catalyzed or photochemical cycloaddition of iodonium ylide to
terminal acetylenes, nitriles, and alkenes offers a simple and new strategy for the synthesis of
substituted furans, oxazoles, and dihydrofurans. We are currently examining the optimization
and application of the methodology described herein towards the total synthesis of natural
products.
Acknowledgements
E.P.G. thanks the University of Ioannina for an INTERREG II fellowship. The authors also
thank Prof. Dr Waldemar Adam and Prof. Dr Armin de Meijere for their generous support.
References
1. For general references on synthetic applications of carbenes (or carbenoids), see: (a) Padwa, A.; Weingarten, M.
D. Chem. Rev. 1996, 96, 223–269. (b) Miller, D. J.; Moody, C. J. Tetrahedron 1995, 51, 10811–10843. (c) Ye, T.;
McKervey, M. A. Chem. Rev. 1994, 94, 1091–1160. (d) Padwa, A.; Krumpe, K. E. Tetrahedron 1992, 48,
5385–5453.
2. (a) Koser, G. F. In The Chemistry of Functional Groups, Supplement D; Wiley: New York, 1983; Chapter 18. (b)
Varvoglis, A. In The Organic Chemistry of Polycoordinated Iodine; VCH Publishers: New York, 1992. (c)
Varvoglis, A. In Hypervalent Iodine in Organic Synthesis; Academic Press: London, 1997.
3. (a) For a general synthesis of b-dicarbonyl iodonium ylides, see: Schank, K.; Lick, C. Synthesis 1983, 393–395.
(b) For a general synthesis of b-disulfonyl iodonium ylides, see: Hadjiarapoglou, L.; Varvoglis, A.; Alcock, N.
W.; Pike, G. A. J. Chem. Soc., Perkin Trans. 1 1988, 2839–2846.
4. Mu¨ller, P.; Fernandez, D. Helv. Chim. Acta 1995, 78, 947–958.
5. (a) Moriarty, R. M.; Prakash, O.; Vaid, R. K.; Zhao, L. J. Am. Chem. Soc. 1989, 111, 6443–6444. (b) Moriarty,
R. M.; Kim, J.; Guo, L. Tetrahedron Lett. 1993, 34, 4129–4132. (c) Spyroudis, S.; Tarantili, P. J. Org. Chem.
1993, 58, 4885–4889. (d) Moriarty, R. M.; May, E. J.; Prakash, O. Tetrahedron Lett. 1997, 38, 4333–4336. (e)
Moriarty, R. M.; May, E. J.; Guo, L.; Prakash, O. Tetrahedron Lett. 1998, 39, 765–766. (f) Alexiou, I.; Gogonas,
E. P.; Hadjiarapoglou, L. P. Synlett 1999, 1925–1926.
6. (a) Hadjiarapoglou, L.; Spyroudis, S.; Varvoglis, A. J. Am. Chem. Soc. 1985, 107, 7178–7179. (b) Hadjiara-
poglou, L. P. Tetrahedron Lett. 1987, 28, 4449–4450. (c) Hadjiarapoglou, L. P.; Schank, K. Tetrahedron Lett.
1989, 30, 6673–6676. (d) Hadjiarapoglou, L.; Varvoglis, A. J. Chem. Res. 1983, 306–307. (e) Hadjiarapoglou, L.;
Varvoglis, A. J. Chem. Soc., Perkin Trans. 1 1989, 379–382. (f) Hadjiarapoglou, L.; Varvoglis, A. J. Heterocycl.
Chem. 1988, 25, 1599–1600. (g) Hadjiarapoglou, L.; Varvoglis, A. Synthesis 1988, 913–915. (h) Hadjiarapoglou,
L. P.; Schank, K. Tetrahedron 1997, 53, 9365–9376. (i) Asouti, A.; Hadjiarapoglou, L. Tetrahedron Lett. 1998, 39,
9073–9076.
7. Koser, G. F.; Yu, S.-M. J. Org. Chem. 1975, 40, 1166–1168. We found that reproducible yields of >95% could
be isolated by following the described procedure, but with extending the stirring for 90 min at room temperature,
instead of 15 min.
8. Hayasi, Y.; Okada, T.; Kawanisi, M. Bull. Chem. Soc. Jpn. 1979, 43, 2506–2511.
9. Representative experimental procedure. Synthesis of 5d. A mixture of iodonium ylide (0.7 g, 2.05 mmol),
phenylacetylene (1.0 g, 9.80 mmol) and catalytic amounts of Rh2(OAc)4 was heated at 110°C for 3 min. The
reaction mixture was subjected to column chromatography (silica gel, CH2Cl2CH2Cl2/EtOAc 4:1) to afford