A. K. Macharla et al. / Tetrahedron Letters 53 (2012) 191–195
195
8. Tanemura, K.; Suzuki, T.; Nishida, Y.; Satsumabayashi, K.; Horaguchi, T. J. Chem.
Soc., Chem. Commun. 2004, 470–471.
Acknowledgments
9. Arbuj, S. S.; Waghmode, S. B.; Ramaswamy, A. V. Tetrahedron Lett. 2007, 48,
1411–1415.
10. Pravst, I.; Zupan, M.; Stavber, S. Tetrahedron 2008, 64, 5191–5199.
11. Das, B.; Venkateswarlu, K.; Mahender, G.; Mahender, I. Tetrahedron Lett. 2005,
46, 3041–3044.
M.A.K. and M.M.R. acknowledge the financial support from the
CSIR, India in the form of fellowships. P.S. acknowledges the finan-
cial support from the UGC, India in the form of fellowship.
12. Meshram, H. M.; Reddy, P. N.; Sadashiv, K.; Yadav, J. S. Tetrahedron Lett. 2005,
46, 623–626.
13. Yang, D.; Yan, Y. L.; Lui, B. J. Org. Chem 2002, 67, 7429–7431.
14. Meshram, H. M.; Reddy, P. N.; Vishnu, P.; Sadashiv, K.; Yadav, J. S. Tetrahedron
Lett. 2006, 47, 991–995.
15. Lee, J. C.; Park, J. Y.; Yoon, S. Y.; Bae, Y. H.; Lee, S. J. Tetrahedron Lett. 2004, 45,
191–193.
16. Bekaert, A.; Provot, O.; Rasolojaona, O.; Alami, M.; Brion, J. D. Tetrahedron Lett.
2005, 46, 4187–4191.
Supplementary data
Supplementary data (experimental procedures, 1H NMR and
Mass spectral data of compounds) associated with this article can
17. Prakash, G. K. S.; Ismail, R.; Garcia, J.; Panja, C.; Rasul, G.; Mathew, T.; Olah, G. A.
Tetrahedron Lett. 2011, 52, 1217–1221.
References and notes
18. Khan, A. T.; Ali, M. A.; Goswami, P.; Choudhury, L. H. J. Org. Chem. 2006, 71,
8961–8963.
19. Kim, E.-H.; Koo, B.-S.; Song, C.-E.; Lee, K.-J. Synth. Commun. 2001, 31, 3627–3632.
20. Gaudry, M.; Marquet, A. Tetrahedron 1970, 26, 5611–5615.
21. Travis, B. R.; Sivakumar, M.; Hollist, G. O.; Borhan, B. Org. Lett. 2003, 5, 1031–
1034.
22. Yang, D.; Zhang, C. J. Org. Chem. 2001, 66, 4814–4818.
23. Gomzalez-Nunez, M. E.; Mello, R.; Olmos, A.; Asensio, G. J. Org. Chem. 2006, 71,
6432–6436.
24. Ashford, S. W.; Grega, K. C. J. Org. Chem. 2001, 66, 1523–1524.
25. Molander, G. A.; Cavalcanti, L. N. J. Org. Chem. 2011, 76, 623–630.
26. (a) Kumar, M. A.; Rohitha, C. N.; Kulkarni, S. J.; Narender, N. Synthesis 2010, 10,
1629–1632; (b) Narender, N.; Krishna Mohan, K. V. V.; Kulkarni, S. J.; Raghavan,
K. V. J. Chem. Res. 2003, 597–598.
1. (a) Erian, A. M.; Sherif, S. M.; Gaber, H. M. Molecules 2003, 8, 793–865; (b)
Benjamin, W. A.; House, H. O. Modern Synthetic Reactions, 2nd ed., New York,
1972, p. 459.; (c) Comprehensive Organic Transformations; Larock, R. C., Ed., 2nd
ed.; VCH: New York, 1999; p 715.
2. (a) Bolton, R. In Bromine Compounds Chemistry and Applications; Price, D., Iddon,
B., Wakefield, B. J., Eds.; Elsevier: Amsterdam, 1988; p 151; (b) Kimpe, N. D.;
Verhe, R. In The Chemistry of
a-Haloketones, a-Haloaldehydes and a-Haloimines;
Patai, S., Rappoport, Z., Eds.; Wiley, 1988; pp 1–119.
3. (a) Arabaci, G.; Guo, X.-C.; Beebe, K. D.; Coggeshall, K. M.; Pei, D. J. Am. Chem.
Soc. 1999, 121, 5085–5086; (b) Arabaci, G.; Yi, T.; Fu, H.; Porter, M. E.; Beebe, K.
D.; Pei, D. Bioorg. Med. Chem. Lett. 2002, 12, 3047–3050.
4. Ishida, J.; Ohtsu, H.; Tachibana, Y.; Nakanishi, Y.; Bastow, K. F.; Nagai, M.; Wang,
H. K.; Itokawa, H.; Lee, K. H. Bioorg. Med. Chem. 2002, 10, 3481–3487.
5. (a) Bigelow, L. A.; Hanslick, R. S. In Organic Synthesis; Wiley: New York, 1943;
Collect. Vol. 2, p. 244; (b) Hakam, K.; Thielmann, M.; Thielmann, T.;
Winterfeldt, E. Tetrahedron 1987, 43, 2035–2044; (c) Ogilvie, W.; Rank, W.
Can. J. Chem. 1987, 65, 166–169; (d) Dowd, P.; Kaufman, C.; Kaufman, P. J. Org.
Chem. 1985, 50, 882–885.
6. (a) Boyd, R. E.; Rasmussen, C. R.; Press, J. B. Synth. Commun. 1995, 25, 1045–
1051; (b) Karimi, S.; Grohmann, K. G. J. Org. Chem. 1995, 60, 554–559; (c)
Curran, D. P.; Bosch, E.; Kaplan, J.; Comb, M. N. J. Org. Chem. 1989, 54, 1826–
1831; (d) Curran, D. P.; Chang, C. T. J. Org. Chem. 1989, 54, 3140–3157.
7. (a) Coats, S. J.; Wasserman, H. H. Tetrahedron Lett. 1995, 36, 7735–7738; (b) Rao,
A. V. R.; Singh, A. K.; Reddy, K. M.; Kumar, K. R. J. Chem. Soc., Perkin Trans. 1
1993, 3171–3175; (c) Shi, X.; Dai, L. J. Org. Chem. 1993, 58, 4596–4598.
27. General procedure for the bromination of carbonyl compounds: OxoneÒ (1.352 g,
2.2 mmol) was added to the well stirred solution of substrate (2 mmol) and
NH4Br (0.215 g, 2.2 mmol) in methanol (10 ml) and the reaction mixture was
allowed to stir at room temperature (or reflux temperature). After completion
of the reaction, as monitored by TLC, the reaction mixture was quenched with
aqueous sodium thiosulfate, and extracted with ethyl acetate (3 Â 25 ml).
Finally, the combined organic layer was washed with water, dried over
anhydrous sodium sulfate, filtered and removal of solvent in vacuo yielded a
crude residue, which was further purified by column chromatography over
silica gel (finer than 200 mesh) to afford pure products. All the products were
identified on the basis of 1H NMR and mass spectral data.