988
N. Schaschke et al. / Bioorg. Med. Chem. Lett. 12 (2002) 985–988
7. Barbosa Pereira, P. J.; Bergner, A.; Macedo-Ribeiro, S.;
Huber, R.; Matschiner, G.; Fritz, H.; Sommerhoff, C. P.;
Bode, W. Nature 1998, 392, 306.
8. Sommerhoff, C. P.; Bode, W.; Barbosa Pereira, P. J.;
Stubbs, M. T.; Sturzebecher, J.; Piechottka, G. P.; Matschi-
ner, G.; Bergner, A. Proc. Natl. Acad. Sci. U.S.A. 1999, 96,
10984.
9. Mammen, M.; Choi, S. K. Whitesides, G. M. Angew.
Chem. Int. Ed. Engl. 1998, 37, 2755.
10. Burgess, L. E.; Newhouse, B. J.; Ibrahim, P.; Rizzi, J.;
Kashem, M. A.; Hartman, A.; Brandhuber, B. J.; Wright,
C. D.; Thomson, D. S.; Vigers, G. P. A.; Koch, K. Proc. Natl.
Acad. Sci. U.S.A. 1999, 96, 8348.
11. Ono, S.; Kuwahara, S.; Takeuchi, M.; Sakashita, H.;
Naito, Y.; Kondo, T. Bioorg. Med. Chem. Lett. 1999, 9, 3285.
12. Rice, K. D.; Gangloff, A. R.; Kuo, E. Y.-L.; Dener, J. M.;
Wang, V. R.; Lum, R.; Newcomb, W. S.; Havel, C.; Putnam,
D.; Cregar, L.; Wong, M.; Warne, R. L. Bioorg. Med. Chem.
Lett. 2000, 10, 2357.
13. Rice, K. D.; Wang, V. R.; Gangloff, A. R.; Kuo, E. Y.-L.;
Dener, J. M.; Newcomb, W. S.; Young, W. B.; Putnam, D.;
Cregar, L.; Wong, M.; Simpson, P. J. Bioorg. Med. Chem.
Lett. 2000, 10, 2361.
14. Schaschke, N.; Matschiner, G.; Zettl, F.; Marquardt, U.;
Bergner, A.; Bode, W.; Sommerhoff, C. P.; Moroder, L. Chem.
Biol. 2001, 8, 313.
15. Dener, J. M.; Rice, K. D.; Newcomb, W. S.; Wang, V. R.;
Young, W. B.; Gangloff, A. R.; Kuo, E. Y.-L.; Cregar, L.; Put-
nam, D.; Wong, M. Bioorg. Med. Chem. Lett. 2001, 11, 1629.
16. Ki-values for the interaction of the inhibitors with the
tryptase tetramer were determined essentially as described
previously.14
Figure 2. Bivalent docking of the S,S-diastereomer of inhibitor 23.
Subunits A and D of the b-tryptase tetramer are shown in ribbon
representation, the inhibitor (colored in yellow) as well as the amino
acid residue Asp-189 (colored in red) of subunits A and D as stick
models: (A) side view, (B) top view.
classified as monovalent binders, whereas all other dia-
stereomers are able to bind in a bivalent manner.
Thus, based on both inhibition kinetics and docking
studies the distance probe 21 is too short to interact
with the tryptase tetramer in a bivalent manner. The
gain in affinity observed with 22 and 23 in comparison
to the binding head together with the results from the
docking unambiguously classify them as bivalent bind-
ers. The decrease in inhibitory potency of 24, a distance
probe still able to interact with b-tryptase in a bivalent
manner (bivalent docking), probably reflects the loss of
conformational entropy upon binding that partially
consumes the entropy effect. In summary, the data
obtained clearly show that the b-tryptase tetramer
recognizes and binds dibasic inhibitors of appropriate
length.
17. Briefly, docking of the ligand is performed as follows: The
bivalent inhibitor is cut into three parts, that is headgroup A,
headgroup D, and spacer fragment. The headgroups are
docked into the S1pockets of subunit A and D, respectively,
using the program FlexX.18 If the headgroups show a binding
mode inside the S1pockets, all fragments of the inhibitor are
reconnected. Tripos force field19 is used to adjust all bond
lengths and bond angles to reasonable values. Subsequently,
two additional geometry optimization steps are applied to the
resulting raw ligand–enzyme complex using the force field
MMFF9420 as implemented in the software package Sybyl.21
First, an optimization step is performed with fixed tryptase
structure but without any constraints on the ligand. For the
final geometry optimization also, parts of the tryptase struc-
ture are allowed to be flexible. Ligands that pass all steps of
the docking algorithm are considered to be bivalent binding
inhibitors.
Acknowledgements
The study was supported by the SFB 469 of the Ludwig-
Maximilians-University of Munich and by Byk-Gulden,
Konstanz, Germany with a postdoctoral grant for N.S.
References and Notes
1. Johnson, D. A. In Handbook of Proteolytic Enzymes; Bar-
rett, A. J.; Rawlings, N. D.; Woessner, J. F., Eds.; Academic:
San Diego, 1998; p 70.
2. Sommerhoff, C. P.; Bode, W.; Matschiner, G.; Bergner, A.;
Fritz, H. Biochim. Biophys. Acta 2000, 1477, 75.
3. Caughey, G. H., Ed. Mast Cell Proteases in Immunology
and Biology; Marcel Dekker: New York, 1995.
4. Caughey, G. H. Am. J. Respir. Cell Mol. Biol. 1997, 16,
621.
18. Kramer, B.; Metz, G.; Raray, M.; Lengauer, T. Med.
Chem. Res. 1999, 9, 463.
19. Clark, M.; Cramer D.; Van Opdenbosch, III N. J. Com-
put. Chem. 1989, 10, 982.
20. Halgren, T. J. Am. Chem. Soc. 1990, 112, 4710.
21. Sybyl 6.7; Triops Ass. Inc.: 2001.
5. Rice, K.; Spencer, J. Exp. Opin. Ther. Pat. 1999, 9, 1537.
6. Sommerhoff, C. P. Am. J. Respir. Crit. Care Med. 2001,
164, 54S.