Curr. Opin. Chem. Biol., 2001, 5, 491–498; (c) A. Sancar, Chem. Rev.,
2003, 103, 2203–2237, and references cited theirein.
only marginally from one dimer to an other. Thus D was taken equal
to 1.25 10−5 cm2 s−1 in ACN and to 6.6 10−6 cm2 s−1 in DMF for all com-
pounds.
3 (a) G. Prakash and D. E. Falvey, J. Am. Chem. Soc., 1995, 117,
11375–11376; (b) X. Zhao, J. Liu, D. S. Hsu, S. Zhao, J. S. Taylor
and A. Sancar, J. Biol. Chem., 1997, 272, 32580–32590; (c) J. Arul,
G. Prakash and D. E. Falvey, J. Am. Chem. Soc., 2000, 122,
11219–11225; (d) K. Hitomi, H. Nakamura, S. T. Kim, T. Mizukoshi,
T. Ishikawa, S. Iwai and T. Todo, J. Biol. Chem., 2001, 276,
10103–10109.
4 (a) J.-M. Savéant, in Advances in Physical Organic Chemistry, ed.
T. T. Tidwell, Academic Press, New York, 2000, vol. 35, 117–192;
(b) L. Pause, M. Robert and J.-M. Savéant, J. Am. Chem. Soc., 2001,
123, 4886–4895; (c) C. Costentin, M. Robert and J. M. Savéant, J. Am.
Chem. Soc., 2003, 125, 105–112.
12 S. T. Kim and A. Sancar, Biochemistry, 1991, 30, 8623–8630.
13 Simulation of the experimental curves with Digisim (BioAnalytical
System) leads to the reported values. Three parameters control the shape
and the position of the wave: the standard potential, the rate constant for
radical anion dimerization and the heterogenous electron transfer rate
constant, ksapp. The two last parameters were estimated to 109 M−1 s−1
and 0.1 cm s−1 respectively, leading to the sole variation of the standard
potential for adjustment with the experimental voltammetric curves. The
uncertainty on the E°’s obtained is estimated to equal 25 mV.
14 C. Pac, J. Kubo, T. Majima and H. Sakurai, Photochem. Photobiol.,
1982, 36, 273–282.
5 (a) U. Wille, in Highlights in Bioorganic Chemistry: Methods and
Applications ed. C. Schmuck and H. Wennemers, Wiley-VCH,
Weinheim, 2004, 352–368; (b) O. Krüger and U. Wille, Org. Lett., 2001,
3, 1455–1458; (c) R. J. Robbins and D. E. Falvey, J. Org. Chem., 1993,
58, 3616–3618; (d) K. Okada, K. Hisamitsu and T. Mukai, J. Chem.
Soc., Chem. Commun., 1980, 941–942; (e) K. Okada, K. Hisamitsu,
T. Miyashi and T. Mukai, J. Chem. Soc., Chem. Commun., 1982,
974–976; (f) C. Pac, Pure Appl. Chem., 1986, 58, 1249–1256.
6 See for example: (a) E. M. Boon, N. M. Jackson, M. D. Wightman,
S. O. Kelley, M. G. Hill and J. K. Barton, J. Phys. Chem. B., 2003, 107,
11805–11812; (b) T. Ito and S. E. Rokita, J. Am. Chem. Soc., 2003, 125,
11480–11481; (c) T. Carell, C. Behrens and J. Gierlich, Org. Biomol.
Chem., 2003, 1, 2221–2228.
15 (a) A. Voityuk, M.-A. Michel-Beyerle and N. Rösch, J. Am. Chem.
Soc., 1996, 118, 9750–9758; (b) A. Voityuk and N. Rösch, J. Phys.
Chem. A, 1997, 101, 8335–8338; (c) M. Aida, F. Inoue, M. Kaneko and
M. Dupuis, J. Am. Chem. Soc., 1997, 119, 12274–12279; (d) J. Rak,
A. Voityuk and N. Rösch, J. Phys. Chem. A, 1998, 102, 7168–7175;
(e) B. Durbeej and L. A. Eriksson, J. Am. Chem. Soc., 2000, 122,
10126–10132.
16 J. Antony, D. M. Medvedev and A. A. Stuchebrukhov, J. Am. Chem.
Soc., 2000, 122, 1057–1065.
17 A. W. MacFarlane IV and R. J. Stanley, Biochemistry, 2003, 42,
8558–8568.
18 (a) H. Komori, R. Masui, S. Kuramitsu, S. Yokoyama, T. Shibata,
Y. Inoue and K. Miki, Proc. Natl. Acad. Sci., USA, 2001, 98,
13560–13565; (b) K. S. Christine, A. W. MacFarlane IV, K. Yang and
R. J. Stanley, J. Biol. Chem., 2002, 41, 38339–38344; (c) H. Park,
K. Zhang, Y. Ren, S. Nadji, N. Sinha and J.-S. Taylor, Proc. Natl. Acad.
Sci., U. S. A., 2002, 99, 15965–15970.
7 (a) C. Behrens, M. Obber and T. Carell, Eur. J. Org. Chem., 2002,
3281–3289; (b) C. Behrens and T. Carell, Chem. Commun., 2003,
1632–1633; (c) S. Breeger, U. Hennecke and T. Carell, J. Am. Chem.
Soc., 2004, 126, 1302–1303.
8 (a) T. E. Cummings and P. J. Elving, J. Electroanal. Chem., 1978, 94,
123–145; (b) T. E. Cummings and P. J. Elving, J. Electroanal. Chem.,
1979, 102, 237–248; (c) Y. Huang and H. Kenttämaa, J. Phys. Chem. A,
2003, 107, 4893–4897.
19 (a) M. Robert and J.-M. Savéant, J. Am. Chem. Soc., 2000, 122,
514–517; (b) C. Costentin, M. Robert and J.-M. Savéant, J. Phys. Chem.
A, 2000, 104, 7492–7501.
20 M. P. Scannell, G. Prakash and D. E. Falvey, J. Phys. Chem. A, 1997,
101, 4332–4337.
21 (a) H. Egg and I. Volgger, Synthesis, 1982, 1071–1073; (b) P. Maul,
E. Fahr, K.-A. Lehner and D. Scheutzow, Z. Naturforsch. B, 1972, 27,
1481–1484; (c) H. Morrison and R. Kloepfer, J. Am. Chem. Soc., 1972,
94, 255–264; (d) C. Näther, O. Krüger and U. Wille, Acta Cryst., 2002,
E58, 405–406.
9 L. Nadjo and J.-M. Savéant, J. Electroanal. Chem., 1973, 48, 113–145.
10 It is known that vinylarylsulfones and vinyl pyridines undergo cyclodi-
merization at the level of the radical anion within catalytic amounts
of charge (see for example J. F. Bergamini, J. Delaunay, P. Hapiot,
M. Hillebrand, C. Lagrost, J. Simonet and E. Volanschi, J. Electro-
anal. Chem., 2004, 569, 175–184; R. G. Janssen, M. Motevalli and
J. H. P. Utley, Chem. Commun., 1998, 539–540). This process involves a
neutral molecule and its radical anion and is accompanied with a signifi-
cant activation barrier. Our observation that the electron stoichiometry
for pyrimidine monomer reduction remains unchanged even at very low
scan rates and the excellent reproducibility of the reduction wave dur-
ing the cycling experiments indicate that a cyclodimerization process as
described for vinylarylsulfones and vinyl pyridines did not occur in our
case. In contrast, dimerization of the pyrimidine monomer radical anions
at the C(6) position only involves minor electronic reorganization and
is likely endowed with only a negligible if any activation barrier, thus
making this step nearly diffusion controlled.
22 D. Garreau and J.-M. Savéant, J. Electroanal. Chem., 1972, 35,
309–331.
23 M. J. Frisch,
G. W. Trucks,
H. B. Schlegel,
M. A. Scuseria,
P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith,
G. A. Petersson, J. A. Montgomery, R. E. Stratmann, J. C. Burant,
S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain,
O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennuci,
C. Pomelli, C. Adamo, S. Clifford, G. Ochterski, Q. Cui, K. Morokuma,
D. K. Malick, A. D. Rabuck, K. Raghavachari, M. A. Al-Laham,
V. G. Zakrzewski,
J. V. Ortiz,
J. B. Foresman,
J. Cioslowski,
B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi,
A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen,
M. W. Wong, J. L. Andres, A. S. Replogle, R. Gomperts, R. L.
Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart,
M. Head-Gordon, C. Gonzalez, J. A. Pople, Gaussian 98, Revision A.1,
Gaussian, Inc., Pittsburgh, PA, 1998.
11 The diffusion coefficient D was estimated through application of the
Stokes–Einstein equation D = kBT/(6a), being the solvent viscosity
and a the hard sphere radius equivalent to the diffusing molecule. Radii
were obtained from a quantum calculation at the B3LYP level (key-
word Volume). Typically, values close to 4.7 Å were found and vary
2 7 5 0
O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 2 7 4 2 – 2 7 5 0