10.1002/anie.201805859
Angewandte Chemie International Edition
COMMUNICATION
moderately activated arenes.[4] Since PhNHSCF3 (1h’) can be
expected not to differ too much in reactivity from its methylated
analog 1h, its failure to undergo non-catalyzed reactions with
allylsilanes is also in line with Fig. 4. The reaction proceeds with
good yields, however, when 1h’ is activated by acetyl chloride.[12]
Please note that Fig. 4 includes only carbon nucleophiles.
Since the N and sN parameters have been derived from
reactions with C-electrophiles, and E parameters have been
derived from reactions with C-nucleophiles, eq. (1) can only be
applied to reactions where at least one of the reaction centers is
carbon. One can assume, however, that the relative reactivities
of electrophiles 1a-i also hold with respect to other types of
nucleophiles, and Cahard and coworkers have recently shown
that allylic alcohols react with the highly electrophilic 1b in the
presence of base to give trifluoromethyl sulfoxides after [2,3]-
sigmatropic rearrangement.[13]
We are grateful to the financial support from Natural Science
Foundation of China (Grant Nos. 21772098, 21390400, 21602116),
the State Key Laboratory on Elemento-organic Chemistry, the
Fundamental Research Funds for the Central Universities, and
Tsinghua University Initiative Scientific Research Program (Grant
Nos. 20131080083, 20141081295).
Keywords: trifluoromethylthiolating reagent •
difluoromethylthiolating reagent• linear free-energy relationships
• electrophilicity • structure–reactivity relationships
[1] a) F. Leroux, P. Jeschke, M. Schlosser, Chem. Rev. 2005, 105, 827-856;
b) A. Tlili, T. Billard, Angew. Chem. Int. Ed. 2013, 52, 6818-6819; c) F.
Toulgoat, S. Alazet, T. Billard, Eur. J. Org. Chem. 2014, 2014, 2415-2428.
d) C. Ni, M. Hu, J. Hu, Chem. Rev. 2015, 115, 765-825; e) X.-H. Xu, K.
Matsuzaki, N. Shibata, Chem. Rev. 2015, 115, 731-764; f) K. Zhang, X.-H.
Xu, F.-L. Qing, Youji Huaxue 2015, 35, 556-569; g) H.-Y. Xiong, X.
Pannecoucke, T. Besset, Chem. Eur. J. 2016, 22, 16734-16749; h) S.
Barata-Vallejo, S. Bonesi, A. Postigo, Org. Biomol. Chem. 2016, 14,
7150-7182; i) F.Toulgoat,T.Billard, Modern Synthesis Processes and
Reactivity of Fluorinated Compounds, Elsevier, 2017, pp.141-179; j) P.
Zhang, L. Lu, Q. Shen, Acta Chim. Sinica 2017, 75, 744-769.
In line with a recent analysis of the electrophilic reactivities of
Michael acceptors[14], Fig. S1 shows that there is no significant
correlation between the electrophilic reactivities E of SCF3
reagents and their LUMO energies. A good linear correlation of
[2] For reviews on electrophilic trifluoromethylthiolating reagents, see: a) X.
Shao, C. Xu, L. Lu, Q. Shen, Acc. Chem. Res. 2015, 48, 1227-1236; b) H.
Chachignon, D. Cahard, Chin. J. Chem. 2016, 34, 445-454; c) M. Li, H.
Zheng, X.-S. Xue, J.-P. Cheng, Tetrahedron Lett. 2018, 59, 1278-1285.
[3] For recent development of electrophilictrifluoromethylthiolating reagents,
see: a) A. Haas, G. Möller, Chem. Ber. 1996, 129, 1383-1388; b) S.
Munavalli, D. K. Rohrbaugh, D. I. Rossman, F. J. Berg, G. W. Wagner, H.
D. Durst, Synth. Commun. 2000, 30, 2847-2854; c) A. Ferry, T. Billard, B.
R. Langlois, E. Bacqué, J. Org. Chem. 2008, 73, 9362-9365; d) A. Ferry,
T. Billard, B. R. Langlois, E. Bacqué, Angew. Chem. Int. Ed. 2009, 48,
8551-8555; e) F. Baert, J. Colomb, T. Billard, Angew. Chem. Int. Ed. 2012,
51, 10382-10385; f) X. Shao, X. Wang, T. Yang, L. Lu, Q. Shen, Angew.
Chem. Int. Ed. 2013, 52, 3457-3460; g) S. Alazet, L. Zimmer, T. Billard,
Chem. Eur. J. 2014, 20, 8589-8593; h) C. Xu, B. Ma, Q. Shen, Angew.
Chem. Int. Ed. 2014, 53, 9316-9320; i) X. Shao, C. Xu, L. Lu, Q. Shen, J.
Org. Chem. 2015, 80, 3012-3021; j) X. Liu, R. An, X. Zhang, J. Luo, X.
Zhao, Angew. Chem. Int. Ed. 2016, 55, 5846-5850; k) P. Zhang, M. Li, X.-
S. Xue, C. Xu, Q. Zhao, Y. Liu, H. Wang, Y. Guo, L. Lu, Q. Shen, J. Org.
Chem. 2016, 81, 7486-7509; l) L. J. C. Bonazaba Milandou, H. Carreyre,
S. Alazet, G. Greco, A. Martin-Mingot, C. Nkounkou Loumpangou, J.-M.
Ouamba, F. Bouazza, T. Billard, S. Thibaudeau, Angew. Chem. Int. Ed.
2017, 56, 169-172; m) H. Zhang, X. Leng, X. Wan, Q. Shen, Org. Chem.
Front. 2017, 4, 1051-1057; For in-situ generated trifluoromethylthiolating
reagents: n) L. Jiang, J. Qian, W. Yi, G. Lu, C. Cai, W. Zhang, Angew.
Chem. Int. Ed. 2015, 54, 14965-14969; o) X. Zhao, A. Q. Wei, T. J. Li, Z.
Y. Su, J. Chen, K. Lu, Org. Chem. Front. 2017, 4, 232-235; p) Q. Yan, L.
Jiang, W. Yi, Q. Liu, W. Zhang, Adv. Synth. Catal. 2017, 359, 2471-2480;
q) T. Ding, L. Jiang, W. Yi, Org. Lett. 2017, 20, 170-173.
electrophilic reactivities
E of N-SCF3 reagents with their
calculated Tt+DA parameters[15] was observed, however (Fig. 5a).
The positive deviation of 1f,g from this so-called
Bell−Evans−Polanyi correlation line[16] for N-SCF3 reagents
indicates that O-SCF3 compounds react via lower intrinsic
barriers, in line with Hoz’ rule[17] that in nucleophilic substitutions,
the intrinsic barriers are the lower, the further right nucleophiles
and nucleofuges are in the periodic table. The even better
correlation between the electrophilic reactivities E and the pKa
values of the corresponding X-H acids in water is probably due
to the fact that the lower intrinsic barriers for the reactions of the
O-SCF3 reagents are compensated by a larger difference
between O-H and O-S bond energies than between N-H and N-
S bond energies (Fig. 5b). These correlations allow a quick
estimation of electrophilic reactivities for new reagents from
thermodynamic data.
[4] A. Ferry, T. Billard, E. Bacqué, B. R. Langlois, J. Fluorine Chem. 2012,
134, 160-163.
[5] D. Zhu, Y. Gu, L. Lu, Q. Shen, J. Am. Chem. Soc. 2015, 137, 10547-
10553.
[6] a) Y.-D. Yang, A. Azuma, E. Tokunaga, M. Yamasaki, M. Shiro, N.
Shibata, J. Am. Chem. Soc. 2013, 135, 8782-8785. b) S. Arimori, O.
Matsubara, M. Takada, M. Shiro, N. Shibata, R. Soc. Open Sci. 2016, 3,
160102; c) H. Chachignon, M. Maeno, H. Kondo, N. Shibata, D. Cahard,
Org. Lett. 2016, 18, 2467-2470.
[7] H. Mayr, M. Patz, Angew. Chem. Int. Ed. 1994, 33, 938-957.
[8] For a comprehensive database of electrophilicity parameters
nucleophilicity parameters N, sN,
E
and
see
Figure 5. Plots of measured electrophilicities E against (a) the corresponding
Tt+DA values taken from ref.15 (not including 1f and 1g), and (b) experimental
[9] a) D. S. Timofeeva, R. Mayer, P. Mayer, A.R. Ofial, H. Mayr, Chem. Eur. J.
2018, 24, 5901-5910; b) F. Seeliger, H. Mayr, Org. Biomol. Chem. 2008,
6, 3052-3058; c) O. Kaumanns, R. Appel, T. Lemek, F. Seeliger, H. Mayr,
J. Org. Chem. 2009, 74, 75-81; d) F. Corral-Bautista, H. Mayr, Eur. J. Org.
Chem. 2013, 2013, 4255-4261; e) F. Corral-Bautista, R. Appel, J. S.
Frickel, H. Mayr, Chem. Eur. J. 2015, 21, 875-884; f) Á. Puente, S. He, F.
Corral-Bautista, A. R. Ofial, H. Mayr, Eur. J. Org. Chem. 2016, 2016,
1841-1848.
pKa values of corresponding X-H acids (in water)[18]
.
In summary, the second-order rate constants of 1a-i with
enamines and carbanions have been used to derive the
empirical electrophilicity parameters E of the most common
tri(di)fluoromethylthiolating reagents. The rule of thumb that
uncatalyzed reactions of the tri(di)fluoromethylthiolating reagents
1a-i will take place with those nucleophiles positioned below
themselves in Fig. 4 (i.e., when E + N > -3) has been
[10] T. B. Phan, M. Breugst, H. Mayr, Angew. Chem. Int. Ed. 2006, 45, 3869-
3874.
[11] J.B. Ernst, L. Rakers, F. Glorius, Synthesis 2017, 49, 260-268.
[12] J. Liu, L. Chu, F.-L. Qing, Org. Lett. 2013, 15, 894-897.
[13] M. Maeno, N. Shibata, D. Cahard, Org. Lett. 2015, 17, 1990-1993.
[14] D. S. Allgäuer, H. Jangra, H. Asahara, Z. Li, Q. Chen, H. Zipse, A. R. Ofial,
H. Mayr, J. Am. Chem. Soc. 2017, 139, 13318-13329.
[15] M. Li, J. Guo, X.-S. Xue, J.-P. Cheng, Org. Lett. 2016, 18, 264-267.
[16] M. G. Evans, M. Polanyi, Trans. Faraday Soc. 1938, 34, 11-24.
[17] S. Hoz, H. Basch, J. L.Wolk, T. Hoz, E. Rozental, J. Am. Chem. Soc.
1999, 121, 7724-7725.
demonstrated to be
a good guide for the design of
tri(di)fluoromethylthiolating reactions by the product studies in
Table 3 and many examples reported in the literature.
Acknowledgements
[18] Internet
Bond-energy
Databank
(iBonD)
Home
Page.
This article is protected by copyright. All rights reserved.