+
+
Vinylidene and Bis(alkylidyne) Clusters
Organometallics, Vol. 15, No. 20, 1996 4183
and carbide has been described in the reaction of
WRu2(µ3-CtCPh)(CO)8Cp with Ru3(CO)12 to give WRu4-
(µ5-C)(µ-CPh)(CO)12Cp and WRu5(µ6-C)(µ-CPh)(CO)14Cp;
this can also be reversed under CO pressure.7
behavior of this important species on the catalyst
surface during the Fischer-Tropsch reaction, where it
is thought to be formed by the reduction of the surface
carbide resulting from the cleavage of CO;10 for example,
surface methylidyne ligands have been directly detected
after hydrogenation of predeposited carbide on a Ru(001)
surface.11 Few general routes to methylidyne clusters
exist and usually involve reduction of a CO ligand,
modification of a methylene group, or dehalogenation
of a C1 halocarbon such as CHCl3.12
This paper reports thermal reactions of the dimolyb-
denum alkyne complexes 1 with Ru3(CO)12 which ap-
parently involve competing processes of CsH and CsC
activation. By control of the conditions, alkyne scission
can be induced in several terminal alkynes, including
acetylene itself, to give octahedral Mo2Ru4 clusters with
methylidyne ligands, albeit in fairly modest yields. A
preliminary account of this work has appeared as a
communication.13
Prior to the work we describe here, only one instance
was known of the scission of a terminal alkyne on a
metal cluster, specifically the thermal reaction of Co-
(CO)2Cp with HCtCSiMe3 to give Co3(µ3-CH)(µ3-CSi-
Me3)Cp3, from which the parent bis(methylidyne) cluster
Co3(µ3-CH)2Cp3 could be obtained by protodesilylation.8
In most cases, activation of the C-H bonds of terminal
alkynes is evidently much more favorable than CtC
scission. One would instinctively expect this on bond
strength grounds,9 but it is somewhat unfortunate, as
scission reactions would provide a useful route to
clusters containing the simplest hydrocarbon frag-
ment: the methylidyne ligand, µ3-CH. Methylidyne
complexes are of interest as model systems for the
(3) Examples on, or leading to, trinuclear clusters are as follows.
Co3: (a) Fritch, J . R.; Vollhardt, K. P. C.; Thomson, M. R.; Day, V. W.
J . Am. Chem. Soc. 1979, 101, 2768. (b) Eaton, B.; O’Connor, J . M.;
Vollhardt, K. P. C. Organometallics 1986, 5, 394. (c) King, R. B.;
Murray, R. M.; Davis, R. E.; Ross, P. K. J . Organomet. Chem. 1987,
330, 115. (d) Yamazaki, H.; Wakatsuki, Y.; Aoki, K. Chem. Lett. 1979,
1041. (e) Quenec’h, P.; Rumin, R.; Pe´tillon, F. Y. J . Organomet. Chem.
1994, 479, 93. Co3 and Rh3: (f) King, R. B.; Harmon, C. A. Inorg. Chem.
1976, 15, 879. Co3, Rh3 and Ir3: (g) Clauss, A. D.; Shapley, J . R.; Wilker,
C. N.; Hoffmann, R. Organometallics 1984, 3, 619. Fe3: (h) Cabrera,
E.; Daran, J . C.; J eannin, Y. J . Chem. Soc., Chem. Commun. 1988,
607. W2Os: (i) Chi, Y.; Shapley, J . R. Organometallics 1985, 4, 1900.
W2Ru: (j) Stone, F. G. A.; Williams, M. L. J . Chem. Soc., Dalton Trans.
1988, 2467.
(4) Examples on, or leading to, tetranuclear clusters are as follows.
WOs3: (a) Park, J . T.; Shapley, J . R.; Churchill, M. R.; Bueno, C. J .
Am. Chem. Soc. 1983, 105, 6182. (b) Park, J . T.; Shapley, J . R.; Bueno,
C.; Ziller, J . W.; Churchill, M. R. Organometallics 1988, 7, 2307. (c)
Park, J . T.; Woo, B. W.; Chung, J .-H.; Shim, S. C.; Lee, J .-H.; Lim,
S.-S.; Suh, I.-H. Organometallics 1994, 13, 3384. W2Ir2: (d) Shapley,
J . R.; McAteer, C. H.; Churchill, M. R.; Biondi, L. V. Organometallics
1984, 3, 1595. WIr3: (e) Shapley, J . R.; Humphrey, M. G.; McAteer, C.
H. ACS Symp. Ser. 1993, No. 517, 127. Co2Fe2: (f) Rumin, R.; Robin,
F.; Pe´tillon, F. Y.; Muir, K. W.; Stevenson, I. Organometallics 1991,
10, 2274. Mo2Ni2 and Mo4Co3: (g) Shaposhnikova, A. D.; Drab, M. V.;
Kamalov, G. L.; Pasynskii, A. A.; Eremenko, I. L.; Nefedov, S. E.;
Struchkov, Y. T.; Yanovsky, A. I. J . Organomet. Chem. 1992, 429, 109.
(h) Pasynskii, A. A.; Eremenko, I. L.; Nefedov, S. E.; Kolobkov, B. I.;
Shaposhnikova, A. D.; Stadnitchenko, R. A.; Drab, M. V.; Struchkov,
Y. T.; Yanovsky, A. I. New J . Chem. 1994, 18, 69.
Exp er im en ta l Section
General experimental techniques were as described in
recent papers from this laboratory.14,15 Infrared spectra were
recorded in CH2Cl2 solution on a Perkin-Elmer 1600 FT-IR
machine using 0.5 mm NaCl cells. UV/visible spectra were
recorded in CH2Cl2 solution on a Unicam UV2 spectrometer
in glass cuvettes of path length 1 cm. 1H and 13C NMR spectra
were obtained in CDCl3 solution on a Bruker AC250 machine
with automated sample changer or an AMX400 spectrometer.
Chemical shifts are given on the δ scale relative to SiMe4 (0.0
ppm). The 13C{1H} NMR spectra were routinely recorded
using an attached proton test technique (J MOD pulse se-
quence). Mass spectra were recorded on a Fisons/BG Prospec
3000 instrument operating in the fast atom bombardment
mode with m-nitrobenzyl alcohol as matrix. Elemental analy-
ses were carried out by the Microanalytical Service of the
Department of Chemistry.
The complex Mo2(CO)6Cp2 was prepared by a literature
method.16 The alkyne complexes 1a -g were prepared by a
slight modification of the literature procedure, described
below.17
Syn th esis of Mo2(CO)4(µ-R1C2R2)Cp 2 (1a -g). A solution
of Mo2(CO)6Cp2 (3 g, 6.12 mmol) in toluene (200-300 mL) was
refluxed for 24 h with a stream of argon bubbling slowly
through it to form Mo2(CO)4Cp2. After the mixture was cooled
to room temperature, 5 equiv of the appropriate alkyne was
added; gaseous alkynes (HCtCH, HCtCMe) were bubbled
through the solution for a few minutes. After this mixture
was stirred overnight, the solvent was removed and the
products isolated by column chromatography. Small amounts
of unreacted Mo2(CO)6Cp2 can sometimes be separated before
elution of the product as a dark red band. Typical yields are
75-80%; we find that improved yields are consistently ob-
(5) Examples leading to higher nuclearity clusters are as follows.
Ru6: (a) Haggitt, J . L.; J ohnson, B. F. G.; Blake, A. J .; Parsons, S. J .
Chem. Soc., Chem. Commun. 1995, 1263. Os6: (b) Gomez-Sal, M. P.;
J ohnson, B. F. G.; Kamarudin, R. A.; Lewis, J .; Raithby, P. R. J . Chem.
Soc., Chem. Commun. 1985, 1622. (c) Fernandez, J . M.; J ohnson, B.
F. G.; Lewis, J .; Raithby, P. R. Acta Crystallogr., Sect. B 1978, 34B,
3086. (d) Eady, C. R.; Fernandez, J . M.; J ohnson, B. F. G.; Lewis, J .;
Raithby, P. R.; Sheldrick, G. M. J . Chem. Soc., Chem. Commun. 1978,
421. Os7: (e) J ohnson, B. F. G.; Lewis, J .; Lunniss, J . A.; Braga, D.;
Grepioni, F. J . Chem. Soc., Chem. Commun. 1988, 972. (f) Braga, D.;
Grepioni, F.; J ohnson, B. F. G.; Lewis, J .; Lunniss, J . A. J . Chem. Soc.,
Dalton Trans. 1991, 2223. (g) Braga, D.; Grepioni, F.; J ohnson, B. F.
G.; Lewis, J .; Lunniss, J . A. J . Chem. Soc., Dalton Trans. 1992, 1101.
(6) For examples on closely related W2Ru clusters see: (a) Busetto,
L.; Green, M.; Hessner, B.; Howard, J . A. K.; J effery, J . C.; Stone, F.
G. A. J . Chem. Soc., Dalton Trans. 1983, 519. (b) Howard, J . A. K.;
Laurie, J . C. V.; J ohnson, O.; Stone, F. G. A. J . Chem. Soc., Dalton
Trans. 1985, 2017. Other examples: (c) Nuel, D.; Dahan, F.; Mathieu,
R. Organometallics 1985, 4, 1436. (d) Lentz, D.; Michael, H. Angew.
Chem. Int. Ed. Engl. 1988, 27, 845. (e) Vollhardt, K. P.; Wolfgruber,
M. Angew. Chem., Int. Ed. Engl. 1986, 25, 929.
(10) (a) Muetterties, E. L.; Rhodin, T. N.; Band, E.; Brucker, C. F.;
Pretzer, W. R. Chem. Rev. 1979, 79, 91. (b) Muetterties, E. L.; Stein,
J . Chem. Rev. 1979, 79, 479. (c) Rofer-DePoorter, C. K. Chem. Rev.
1981, 81, 447. (d) Herrmann, W. A. Angew. Chem., Int. Ed. Engl. 1982,
21, 117.
(7) Chiang, S.-J .; Chi, Y.; Su, P.-C.; Peng, S.-M.; Lee, G.-H. J . Am.
Chem. Soc. 1994, 116, 11181.
(8) Fritch, J . R.; Vollhardt, K. P. C. Angew. Chem., Int. Ed. Engl.
1980, 19, 559. A further example was observed in solution, but the
product was not isolated: Hriljac, J . A.; Shriver, D. F. J . Am. Chem.
Soc. 1987, 109, 6011.
(11) Barteau, M. A.; Feulner, P.; Stengl, R.; Broughton, J . Q.;
Menzel, D. J . Catal. 1985, 94, 51.
(12) Akita, M.; Noda, K.; Moro-oka, Y. Organometallics 1994, 13,
4145 and references therein.
(13) Adams, H.; Gill, L. J .; Morris, M. J . J . Chem. Soc., Chem.
Commun. 1995, 899; see also correction on p 1309.
(14) Adams, H.; Gill, L. J .; Morris, M. J . Organometallics 1996, 15,
464.
(15) Adams, H.; Bailey, N. A.; Gill, L. J .; Morris, M. J .; Wildgoose,
F. A. J . Chem. Soc., Dalton Trans. 1996, 1437.
(16) King, R. B. Organometallic Syntheses; Academic Press: New
York, 1965; Vol. 1, p 109.
(9) Estimates of the CsH and CtC bond strengths in acetylene are
535 and 960 kJ mol-1, respectively. Even when allowance is made for
the weakening of the CtC bond on coordination of the alkyne to a
dimolybdenum center, it is still the stronger of the two; for example
in complexes 1 the CtC bond length is around 1.33 Å, similar to that
in ethylene (1.337 Å), where the CdC bond strength is 719 kJ mol-1
.
Data from: Weast, R. C., Ed. Handbook of Chemistry and Physics;
CRC Press: Boca Raton, FL, 1977.
(17) Bailey, W. I., J r.; Chisholm, M. H.; Cotton, F. A.; Rankel, L. A.
J . Am. Chem. Soc. 1978, 100, 5764.