1 Carbohydrate Analogues as Glycosidase Inhibitors—Nojirimycin and
hydrogenolysis [H2, Pd(OH)2, AcOH, AcOEt–EtOH 1 1]
afforded 912 in quantitative yield.
Beyond, ed A. Stütz, VCH, Weinheim, 1998; S. V. Evans, L. E. Fellows,
T. K. M. Shing and G. W. Fleet, Phytochemistry, 1985, 24, 1953.
2 A. D. Elbein, FASEB J., 1991, 5, 3055.
3 R. A. Gruters, J. J. Neefjes, M. Tersmette, R. E. Y. De Goede, A. Tulp,
H. G. Huisman, F. Miedema and H. L. Ploegh, Nature, 1987, 330,
74.
4 See for example: R. J. Bernacki, M. J. Niedbala and W. Korytnyk,
Cancer Metastasis Rev., 1985, 4, 81; R. Pili, J. Chang, R. A. Patris, R. A.
Mueller, F. J. Chrest and A. Passaniti, Cancer Res., 1995, 55, 2920.
5 See for example: B. Junge, M. Matzke and J. Stoltefuss, Handbook of
Experimental Pharmacology, 1996, 119, 411.
6 G. C. Kite, L. E. Fellows, G. W. J. Fleet, P. S. Liu, A. M. Scofield and
N. G. Smith, Tetrahedron Lett., 1988, 29, 6483; I. Bruce, G. W. Fleet,
I. Cenci di Bello and B. Winchester, Tetrahedron, 1992, 48, 183; K. E.
Holt, F. J. Leeper and S. Handa, J. Chem. Soc., Perkin Trans. I, 1994,
231; C.-H. Wong, L. Provencher, J. A. Porco, Jr., S.-H. Jung, Y.-F.
Wang, L. Chen, R. Wang and D. H. Steensma, J. Org. Chem., 1995, 60,
1492.
The procedure herein reported allows the synthesis of
protected allyl-a-C-glycoside of nojirimycin through a highly
stereoselective (80% de) and high yielding procedure (36%, 6
steps), from commercially available tetrabenzylglucose. The
manipulation of the allylic appendage, widely reported in C-
glycosides and to some extent also in iminosugars, allows the
synthesis of a variety of functional groups and derivatives. The
reported approach will be exploited in future projects devoted to
the synthesis of imino-C-disaccharides.
We thank the Ministero dell’Università e della Ricerca
Scientifica e Tecnologica (MURST) for financial support and
Paolo Petroni for contributing to the experimental work.
Notes and references
† Selected data for 6: oil, [a]D + 21.4 (c 1, CHCl3); dH(500 MHz, C6D6):
2.39 (dt, 1H, J 14.0, 8.1, H-1Aa), 2.53 (dt, 1H, J 14.0, 5.8, H-1Ab), 3.11 (ddd,
1H, J 9.5, 4.9, 2.1, H-5), 3.16 (dt, 1H, J 8.6, 5.4, H-1), 3.63 (dd, 1H, J 10.3,
2.1, H-6a), 3.75–3.83 (m, 2H, H-2, H-6b), 3.84–3.90 (m, 3H, PhCHN, H-3,
H-4), 4.04 (d, 1H, J 14.0, PhCHN), 4.14, 4.20 (ABq, 2H, J 11.9, PhCH2O),
4.34 (s, 2H, PhCH2O), 4.65, 5.04 (ABq, 2H, J 11.4, PhCH2O), 4.84, 5.03
(ABq, 2H, J 11.2, PhCH2O), 4.98–5.13 (m, 2H, H-3A), 5.78–5.92 (m, 1H, H-
2A), 7.00–7.41 (m, 25H, Ph-H); dC(75.43 MHz, CDCl3, aromatic C omitted)
29.11 (t, C-1A), 52.95 (t, NCH2Ph), 57.19 and 57.53 (2d, C-1 and C-5), 68.57
(t, C-6), 72.17, 72.90, 75.09 and 75.38 (4t, OCH2Ph), 78.72, 79.31, 83.99
(3d, C-2, C-3, C-4), 115.30 (t, C-3A), 137.76 (d, C-2A). Anal. Calcd. for
7 For a comprehensive review see: C. W. Ekhart, M. H. Fechter, P.
Hadwiger, E. Mlaker, A. E. Stütz, A. Tauss and T. Wrodnigg in
Carbohydrate Analogues as Glycosidase Inhibitors—Nojirimycin and
Beyond, ed. A. Stütz, VCH, Weinheim, 1998, p. 254.
8 For a recent review of synthetic methods see: B. La Ferla and F. Nicotra
in Carbohydrate Analogues as Glycosidase Inhibitors—Nojirimycin
and Beyond, ed. A. Stütz, VCH, Weinheim, 1998, p. 68.
9 See for example: K. K.-C. Liu, T. Kajimoto, L. Chen, Z. Zhong, Y.
Ichikawa and C.-H. Wong, J. Org. Chem., 1991, 56, 6280; T. Kajimoto,
K. K.-C. Liu, R. L. Pederson, Z. Zhong, Y. Ichikawa, J. A. Porco, Jr. and
C.-H. Wong, J. Am. Chem. Soc., 1991, 113, 6187.
C
44H47NO4: C 80.82, H 7.25, N 2.14%; Found C 80.77, H 7.28, N
10 See for example: A. Karpas, G. W. Fleet, R. A. Dwek, S. Petursson,
S. K. Namgoong, N. G. Ramsden, G. S. Jacob and T. W. Rademacher,
Proc. Natl. Acad. Sci. USA, 1988, 85, 9229; A. Tan, L. van der Boek, S.
van Boeckel, H. Ploegh and J. Bolscher, J. Biol. Chem., 1991, 266,
14 504; G. B. Karlsson, T. D. Butters, R. A. Dwek and F. M. Platt,
J. Biol. Chem., 1993, 268, 570; F. M. Platt, G. R. Neises, R. A. Dwek
and T. D. Butters, J. Biol. Chem., 1994, 269, 8362.
11 C. Bertozzi and M. Bednarski, Carbohydr. Res., 1992, 223, 243; K. H.
Mortell, R. V. Weatherman and L. L. Kiessling, J. Am. Chem. Soc.,
1996, 118, 2297; L. Lay, F. Nicotra, C. Pangrazio, L. Panza and G.
Russo, J. Chem. Soc., Perkin 1, 1994, 333; F. Peri, L. Cipolla, B. La
Ferla, P. Dumy and F. Nicotra, Glycoconjugates J., 1999, 16, 399; L.
Cipolla, F. Nicotra, E. Vismara and M. Guerrini, Tetrahedron, 1997, 53,
6163
12 T. Fuchss, H. Streicher and R. R. Schmidt, Liebigs Ann. Rec., 1997,
1315.
13 L. Cipolla, L. Lay, F. Nicotra, C. Pangrazio and L. Panza, Tetrahedron,
1995, 51, 4679.
14 H. S. Overkleeft, J. Van Wiltenburg and U. K. Pandit, Tetrahedron,
1994, 50, 4215; R. Hoos, A. B. Naughton and A. Vasella, Helv. Chim.
Acta, 1993, 76, 2666.
15 L. Cipolla, F. Nicotra and C. Pangrazio, Gazz. Chim. Ital., 1996, 126,
663.
2.11%.
‡ Determined by 13C NMR of the crude reduction product, in comparison
with the spectrum of the epimer at C-5 (ref. 8).
§ Selected data for 7: oil, [a]D + 9.6 (c 1, CHCl3); dH(300 MHz, C6D6): 1.76
(s, 3H, H-3A), 2.23 (dd, 1H, J 15.3, 5.0, H-1Aa), 2.57 (dd, 1H, J 15.3, 7.1, H-
1Ab), 2.83–2.94 (m, 1H, H-5), 3.61 (dd, 1H, J 10.2, 1.6, H-6a), 3.64–3.82 (m,
5H, H-2, H-3, H-4, H-6b, PhCHN), 3.84–3.90 (m, 2H, H-1, PhCHN), 4.10,
4.15 (ABq, J 11.8, PhCH2O), 4.24, 4.32 (ABq, J 11.8, PhCH2O), 4.61, 5.02
(ABq, J 11.4, PhCH2O), 4.84, 5.03 (ABq, J 11.2, PhCH2O), 7.01–7.48 (m,
25H, Ph-H); Anal. Calcd. for C44H47NO5: C 78.89, H 7.0, N 2.09%; Found
C 78.92, H 7.08, N 2.06%.
¶ Selected data for 8: yellow oil, [a]D + 11 (c 0.65, CHCl3); dH(300 MHz,
CDCl3): 1.66 (bq, 1H, J 11.0, H-1Aa), 2.24 (ddd, 1H, J 11.0, 5.7, 5.7, H-1Ab),
2.98–3.03 (m, 1H, H-5), 3.21 (dd, 1H, J 9.9, 6.8, H-3Aa), 3.30 (dd, 1H, J 9.9,
4.8, H-3Ab), 3.55 (dd, 1H, J 8.1, 5.1, H-4), 3.60–3.72 (m, 4 H, H-1, H-6a, H-
6b, PhCHN), 3.86 (t, 1H, J 8.3. H-3), 3.90–3.97 (m, 2H, H-2A, PhCHN), 4.15
(t, 1H, J 8.3. H-2), 4.41 (s, 2H, PhCH2O), 4.43, 4.61 (ABq, J 11.0,
PhCH2O), 4.78, 4.97 (ABq, J 11.4, PhCH2O); dC(75.43 MHz, CDCl3,
aromatic C omitted) 9.92 (t, C-3A), 36.20 (t, C-1A), 59.34, 60.83 (2d, C-1 and
C-5), 54.76 (t, NCH2Ph), 67.02 (t, C-6), 72.84, 73.26 and 74.06 (3t,
OCH2Ph), 77.56, 80.00, 80.75 and 84.16 (4d, C-2, C-3, C-4 and C-2A);
Calcd. for C37H40INO4: C 64.44, H 5.85, I 18.40, N 2.03%; Found C 64.60,
H 5.70, I 18.55, N 1.99%.
16 L. Cipolla, L. Lay and F. Nicotra, J. Org. Chem., 1997, 62, 6678.
1290
Chem. Commun., 2000, 1289–1290