10.1002/anie.201811471
Angewandte Chemie International Edition
COMMUNICATION
[3]
(a) X. C. Gao, H. Cao, L. Q. Zhang, B.W. Zhang, Y. Cao, C. H. Huang,
J. Mater. Chem. 1999, 9, 1077; b) A. Gurspy, S. Demirayak, G. Capan,
K. Erol, K. Vural, Eur. J. Med. Chem. 2000, 35, 359; c) H. B. Fu, J.
N.Yao, J. Am. Chem. Soc. 2001, 123, 1434; d) M. E. Camacho, J. Leon,
A. Entrena, G. Velasco, M. D. Carrion, G. Escames, A. Vivo, D. Acuna-
Castroviejo, M. A. Gallo, A, Espinosa, J. Med. Chem. 2004, 47, 5641; e)
X. Zhang, X. Li, G. F. Allan, T. Sbriscia, O. Linton, S. G. Lundeen, Z.
Sui, J. Med. Chem. 2007, 50, 3857; f) A. S. Girgis, A. H. Basta, H. El-
Saied, M. A. Mohamed, A. H. Bedair, A. S. Salim, R. Soc. Open Sci.
2018, 5, 171964.
[4]
[5]
(a) D. E. Applequist, R. D. Gdanski, J. Org. Chem. 1981, 46, 2502; b)
O. Roman, R. Lesyk, Eur. J. Med. Chem. 2016, 113, 145.
Maruoka, J. Am. Chem. Soc. 2006, 128, 2174; c) M. P. Sibi, L. M.
Stanley, T. Soeta, Adv. Synth. Catal. 2006, 348, 2371; d) M. P. Sibi, L.
M. Stanley, T. Soeta, Adv. Synth. Catal. 2006, 348, 2371; e) M. P. Sibi,
L. M. Stanley, T. Soeta, Org. Lett. 2007, 9, 1553; f) L. Gao, G.-S.
Mucsi, I. Zupko, B. Rethy, G. Falkay, G. Schneider, J. Wolfling, J. Am.
Mahé, I. Dez, V. Levachera, J.-F. Brière, Org. Biomol. Chem. 2012, 10,
3946; j) X. Kou, Q. Shao, C. Ye, G. Yang, W. Zhang, J. Am. Chem. Soc.
2018, 140, 7587.
Scheme 3. Derivatization of pyrazoline 5b.
furnished a 3:2 diastereomeric mixture of the enantioenriched
diamine 9 in 96% yield. Methods to access diamine structures
are limited and this example represents the first protocol to
obtain optically active 1,3-diamines from pyrazolines. Lastly,
Sonogashira coupling with the hormone drug mestranol readily
furnished enantiopure alkyne 10 in 88% yield.
[6]
[7]
S. Kanemasa, T. Kanai, J. Am. Chem. Soc. 2000, 122, 10710.
(a) S. Müller, B. List, Angew. Chem. Int. Ed. 2009, 48, 9975; b) S.
Müller, B. List, Synthesis 2010, 13, 2171; c) M. Rueping, M. S. Maji, H.
B. Kucuk, I. Atodiresei, Angew. Chem. Int. Ed. 2012, 51, 12864; d) L.
Deiana, G.-L. Zhao, H. Leijonmarck, J. Sun, C. W. Lehmann, A.
Cordova, ChemistryOpen, 2012, 1, 134; e) M. Fernandez, E. Reyes,
J.L. Vicario, D. Badia, L. Carrillo, Adv. Synth. Catal. 2012, 354, 371.
O. Mahe, I. Dez, V. Levacher, J.-F. Brière, Angew. Chem. Int. Ed. 2010,
49, 7072.
In summary, an efficient platform for the synthesis of
enantioenriched 2-pyrazoline scaffolds from beta-substituted
enones
and
monoalkyl-substituted
hydrazine-derived
hydrazones has been designed and developed. Deployment of a
novel cinchonidine-derived bifunctional catalyst in conjunction
with an optimized hydrazone derivative allowed good control of
reactivity and enantioselectivity in the initial Michael addition
step. A staged addition of hydroxylamine then facilitated 2-
pyrazoline formation after cleavage of the chiral hydrazone
intermediate. The new synthetic protocol was found to be
compatible with a range of functionalities including esters,
nitriles, heterocycles, alkenes and alkynes, and was amenable
to decagram scale synthesis. The scalability of this method,
coupled with a range of novel late-stage derivatizations has
highlighted the synthetic versatility of the reaction products, with
potential applications in biomedical and agrochemical contexts.
[8]
[9]
N. R. Campbell, B. Sun, R. P. Singh, L. Deng, Adv. Synth. Catal. 2011,
353, 3123
[10] In our initial studies, a wide screen of organocatalysts failed to produce
enantioselectivities >65:35 er in the aza-Michael addition of
methylhydrazine to 2a (due to a significant background reaction). For
more on the use of hydrazines in racemic pyrazoline synthesis see: (a)
G.Wu, R. Liang, Y. Chen, L. Wu, Syn. Comm. 2010, 40, 129; b) Z.-P.
Lin, J.-T. Li, E-Journal of Chemistry, 2012, 9, 267. For more on the
nucleophillicity of hydrazines see: (a) J. M. Garver, S. Gronert, V. M.
Bierbaum, J. Am. Chem. Soc. 2011, 133, 13894; b) T. A. Nigst, A.
Antipova, H. Mayr, J. Org. Chem. 2012, 77, 8142.
[11] For publications on the diverse reactivity of hydrazones in organic
synthesis see: (a) M. Sugiura, S. Kobayashi, Angew. Chem. Int. Ed.
2005, 44, 5176; D. Perdicchia, K. A. Jørgensen, J. Org. Chem. 2007,
72, 3565; b) E. Li, P. Xie, L. Yang, L. Liang, Y. Huang, Chem. Asian J.
2013, 8, 603; c) M. d. G. Retamosa, E. Matador, D. Monge, J. M.
Lassaletta, R. Fernandez, Chem. Eur. J. 2016, 22, 13430; d) Y. Wang,
Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 2017, 56, 5612.
Acknowledgements
[12] For publications on bifunctional organocatalysis: (a) T. Okino, Y. Hoashi,
Y. Takemoto, J. Am. Chem. Soc. 2003, 125, 12672; b) H. Li, Y. Wang,
L. Tang, L. Deng, J. Am. Chem. Soc. 2004, 126, 9906; c) T. Okino, Y.
Hoashi, T. Furukawa, X. Xu, Y. Takemoto, J. Am. Chem. Soc., 2005,
127, 119; d) B. Vakulya, S.Varga, A. Csámpai, T. Soós, Org. Lett. 2005,
7, 1967; e) J. Ye, D. J Dixon, P. Hynes, Chem. Commun. 2005, 0,
4481; f) J. Song, Y. Wang, L. Deng, J. Am. Chem. Soc. 2006, 128,
6048; g) S. H. McCooey, S. J. Connon, Angew. Chem. Int. Ed. 2005,
44, 6367; h) B.-J. Li, L. Jiang, M. Liu, Y.-C. Chen, L.-S. Ding, Y. Wu,
Synlett, 2005, 4, 603; i) M. G. Nunez, A. F. M. Farley, D. J. Dixon, J.
Am. Chem. Soc. 2013, 135, 16348. For reviews, see: (a) Y. Takemoto,
Org. Biomol. Chem. 2005, 3, 4299; b) S. Connon, Chem. Commun.
2008, 2499.
DJD and CJT wish to thank Bayer AG for generous financial support and Dr.
Uwe Döller for helpful discussions. We are grateful to Dr. Jamie Leitch for help
in the preparation of this manuscript. Heyao Shi is also thanked for X-ray
structure determination of compound 5b, and Dr Amber L. Thompson and Dr
Kirsten E. Christensen (Oxford Chemical Crystallography) for X-ray mentoring.
Keywords: hydrazone, enantioselective catalysis, pyrazolines, aza-Michael
addition, bifunctional catalysis
[1]
(a) L. C. Behr, R. Fusco, C. H. Jarboe, Pyrazoles, Pyrazolines,
Pyrazolidines, Indazoles and Condensed Rings, The Chemistry of
Heterocyclic Compounds 22, Interscience Publishers, New York, 1967;
b) L. M. Blair, J. Sperry, J. Nat. Prod. 2013, 76, 794; c) V. Kumar, K.
Kaur, G. K. Gupta, A. K. Sharma, Eur. J. Chem. 2013, 69, 735; d) G. Le
Goff, J. Ouazzani, J. Bioorg. Med. Chem. 2014, 22, 6529; e) Y.-L. Du,
H.-Y. He, M. A. Higgins, K. S. Ryan, Nat. Chem. Bio. 2017, 13, 836.
(a) J. H. Lange, H. K. Coolen, H. H. van Stuiven-berg, J. A. Dijksman,
A. H. Herremans, E. Ronken, H. G. Keizer, K. Tipker, A. C. McCreary,
W. Veerman, H. C. Wals, B. Stork, P. C. Verveer, A. P. den Hartog, N.
M. de Jong, T. J. Adolfs, J. Hoogendoorn, C. G. Kruse, J. Med. Chem.
2004, 47, 627; b) J. R. Goodell, F. Puig-Basagoiti, B. M. Forshey, P.-Y.
Shi, D. M. Ferguson, J. Med. Chem. 2006, 49, 2127; c) P. K.
Mykhailiuk, Angew. Chem. Int. Ed. 2015, 54, 6558.
[13] See ESI for possible mechanism of formation. For the enantioselective
synthesis of such structures, see: W. Wu, X. Yuan, J. Hu, X. Wu, Y. Wei,
Z. Liu, J. Lu, J. Ye, Org. Lett. 2013, 15, 4524.
[14] (a) F. Wang, T. Luo, J. Hu, Y. Wang, H. S. Krishnan, P. V. Jog, S. K.
Ganesh, G. K. S. Prakash, G. A. Olah, Angew. Chem. Int. Ed. 2011, 50,
7153; b) C. J. Thomson, Q. Zhang, N. Al-Maharik, M. Buehl, D. B.
Cordes, A. M. Z. Slawin, D. O’Hagan, Chem. Comm. 2018, 54, 8415.
[15] PhNHNH2 afforded only trace amounts of the desired 2-pyrazoline.
[16] 7 could be recycled to benzaldehyde via hydrolysis with HCl (see ESI).
[17] (a) J. Li, C. Kornhaass, L. Ackermann, Chem. Commun. 2012, 48,
11343; b) J. A. Leitch, P. B. Wilson, C. L. McMullin, M. F. Mahon, Y.
Bhonoah, I. H. Williams, C. G. Frost, ACS Catal. 2016, 6, 5520.
[2]
This article is protected by copyright. All rights reserved.