LETTER
Highly Efficient Oxidation of Propargylic Alcohols to Ynones
2367
C. G.; Murry, J. A.; Dormer, P. G. Org. Lett. 2002, 4, 2071.
(f) Xing, Y.; O’Doherty, G. A. Org. Lett. 2009, 11, 1107.
(g) Kim, N.-J.; Moon, H.; Park, T.; Yun, H.; Jung, J.-W.;
Chang, D.-J.; Kim, D.-D.; Suh, Y.-G. J. Org. Chem. 2010,
75, 7458. (h) Trygstad, T. M.; Pang, Y.; Forsyth, C. J. J.
Org. Chem. 2009, 74, 910. (i) Rooke, D. A.; Ferreira, E. M.
J. Am. Chem. Soc. 2010, 132, 11926.
complex in solution. In addition, the leaching of Cu spe-
cies into the filtrate was also detected by ICP analysis, and
only 5.4% of catalyst was leached into the solution.20
A tentative mechanism for bpy ligand accelerating the ox-
idation has been suggested. The formation of copper
alkoxide binding with TPHP is proposed as the key step in
the oxidation,21 and then, the coordination of bpy ligand to
copper(II) ion stabilizes the key intermediate, which re-
sults in the acceleration of the reaction (Figure 1).
(3) Palladium-catalyzed cross-coupling of terminal alkynes and
acyl chloride provides an effective method to synthesize
ynones. For some selected examples, see: (a) Tohda, Y.;
Sonogashira, K.; Hagihara, N. Synthesis 1977, 777.
(b) Chen, L.; Li, C.-J. Org. Lett. 2004, 6, 3151. (c) Alonso,
D. A.; Nájera, C.; Pacheco, M. C. J. Org. Chem. 2004, 69,
1615. (d) Palimkr, S. S.; Kumar, P. H.; Jogdand, N. R.;
Daniel, T.; Lahoti, R. J.; Srinivasan, K. V. Tetrahedron Lett.
2006, 47, 5527.
(4) Shen, Y.-L.; Wu, W.-T.; Liu, Q.; Wu, G.-L.; Wu, L.-M.
J. Chem. Res. 2006, 8, 545.
(5) Novokshonova, I. A.; Novokshonova, V. V.; Medvedeva,
A. S. Synthesis 2008, 3797.
N
N
Cu OOt-Bu
O
R2
R1
(6) For a recent example, see: Bao, W. L.; Wang, Q.; Zheng,
Y. F. Chin. Chem. Lett. 2004, 15, 1029.
Figure 1 Proposed key intermediate in the bpy-accelerated oxidation
(7) Schmieder-Van De Vondervoort, L.; Bouttemy, S.; Padron,
J. M.; Le Bras, J.; Muzart, J.; Alsters, P. L. Synlett. 2002,
243.
In conclusion, a ligand-promoted, copper-catalyzed oxi-
dation of propargylic alcohols was developed with TBHP
as oxidant at room temperature. Copper nanoparticles can
be used as effective catalysts in the reaction in the pres-
ence of bpy ligand. Various propargylic alcohols were ox-
idized to the corresponding ynones with good to excellent
yield. Furthermore, in the absence of TBHP, Cu Nps–bpy
could catalyze the aerobic oxidation of propargylic alco-
hols effectively, and the reaction is ligand-triggered. The
detailed mechanism, the effects of particle size and parti-
cle support as well as the scope of the reaction are current-
ly under further investigations.
(8) Blay, G.; Cardona, L.; Fernández, I.; Pedro, J. R. Synthesis
2007, 3329.
(9) (a) Maeda, Y.; Kakiuchi, N.; Matsumura, S.; Nishimura, T.;
Uemura, S. Tetrahedron Lett. 2001, 42, 8877. (b) Maeda,
Y.; Kakiuchi, N.; Matsumura, S.; Nishimura, T.; Kawamura,
T.; Uemura, S. J. Org. Chem. 2002, 67, 6718.
(10) For recent reviews, see: (a) Astruc, D.; Lu, F.; Aranzaes,
J. M. Angew. Chem. Int. Ed. 2005, 44, 7852. (b) Corma, A.;
Garcia, H. Chem. Soc. Rev. 2008, 37, 2096. (c) Gu, Y.; Li,
G. Adv. Synth. Catal. 2009, 351, 817.
(11) (a) Mitsudome, T.; Mikami, Y.; Ebata, K.; Mizugaki, T.;
Jitsukawa, K.; Kaneda, K. Chem. Commun. 2008, 4804.
(b) Pande, S.; Saha, A.; Jana, S.; Sarkar, S.; Basu, M.;
Pradhan, M.; Sinha, A. K.; Saha, S.; Pal, A.; Pal, T. Org.
Lett. 2008, 10, 5179.
(12) For a phosphine ligand stabilized Au(0) nanoparticle
catalyzed diboration, see: (a) Ramirez, J.; Sanau, M.;
Fernandez, E. Angew. Chem. Int. Ed. 2008, 47, 5194.
Very recently, we reported a ligand-promoted, silver nano-
particals catalyzed reaction. See: (b) Yu, M.; Lin, M.; Han,
C.; Zhu, L.; Li, C.-J.; Yao, X. Tetrahedron Lett. 2010, 51,
6722.
Supporting Information for this article is available online at
Acknowledgment
We are grateful for the financial support from the Natural Science
Foundation of Jiangsu Province (BK2008386 to X.Y.), the NUAA
Research Funding (No. 2010169 to X.Y.) and the National Natural
Science Foundation of China (20602018 to X.Y.).
(13) The diameter of Cu Nps is ca. 20–30 nm. The detailed
procedure about the synthesis of Cu Nps is described in the
Supporting Information.
(14) The in situ formed Cu2O on the surface of Cu Nps was
proposed as the catalytic active species in the reaction.
However, when pure Cu2O Nps were utilized as catalyst,
similar catalytic activity but lower selectivity was observed.
(15) Typical Procedure for the Cu Nps Catalyzed Oxidation
of Propargylic Alcohols with TBHP as Oxidant (Entry 1,
Table 2): 1,3-Diphenyl-2-propyn-1-ol (1a, 0.2 mmol), Cu
NPs (1.3 mg, 10 mol%), bipyridine (3.2 mg, 10 mol%),
TBHP (55 mL, 2.0 equiv, 70% in H2O), and CH2Cl2 (1.5 mL)
were added into a 20-mL Schlenk tube under air. The
mixture was stirred at r.t. for 2 h. Then, the reaction was
stopped, and the reaction mixture was purified by flash
column chromatography on silica gel (hexanes–EtOAc,
30:1). Compound 2a was obtained in >98% yield.
(16) From crude 1H NMR and TLC, there are no overoxidized by-
products observed.
References and Notes
(1) (a) Kundu, N. G.; Das, B.; Spears, C. P.; Majumdar, A.;
Kang, S. I. J. Med. Chem. 1990, 33, 1975. (b) Kundu, N.
G.; Mahanty, J. S.; Spears, C. P. Bioorg. Med. Chem. Lett.
1996, 6, 1497. (c) Penning, T. M.; Covey, D. F.; Talalay, P.
Biochem. J. 1981, 193, 217. (d) Midland, M. M.; Nguyen,
N. H. J. Org. Chem. 1981, 46, 4107.
(2) For some recent examples, see: (a) Kel’in, A. V.;
Gevorgyan, V. J. Org. Chem. 2002, 67, 95. (b) Hoven, B.
G. V.; Ali, B. E.; Alper, H. J. Org. Chem. 2000, 65, 4131.
(c) Grotjahn, D. B.; Van, S.; Combs, D.; Lev, D. A.;
Schneider, C.; Rideout, M.; Meyer, C.; Hernandez, G.;
Mejorado, L. J. Org. Chem. 2002, 67, 9200. (d) Karpov,
A. S.; Müller, T. J. J. Org. Lett. 2003, 5, 3451. (e) Savarin,
Synlett 2011, No. 16, 2363–2368 © Thieme Stuttgart · New York