1486
D. S. Masterson et al. / Tetrahedron: Asymmetry 20 (2009) 1476–1486
19. Toone, E. J.; Jones, B. Tetrahedron: Asymmetry 1991, 2, 1041–1052.
4.4.9. (S)-a-Methyl tyrosine ethyl ester 10
20. Toone, E. J.; Werth, M. J.; Jones, J. B. J. Am. Chem. Soc. 1990, 112, 4946–
4952.
21. Davis, B. G.; Boyer, V. Nat. Prod. Rep. 2001, 18, 618–640.
22. Luyten, M.; Müller, S.; Herzog, B.; Keese, R. Helv. Chim. Acta 1987, 70, 1250–
1254.
23. Guanti, G.; Banfi, L.; Narisano, E.; Riva, R.; Thea, S. Tetrahedron Lett. 1986, 27,
4639–4642.
24. Wallert, S.; Drauz, K.; Grayson, I.; Gröger, H.; Dominguez de Maria, P.; Bolm, C.
Green Chem. 2005, 7, 602–605.
25. Kim, K.-W.; Song, B.; Choi, M.-Y.; Kim, M.-J. Org. Lett. 2001, 3, 1507–
1509.
26. Berkowitz, D. B.; Hartung, R. E.; Choi, S. Tetrahedron: Asymmetry 1999, 10,
4513–4520.
27. Reetz, M. T. Angew. Chem., Int. Ed. 2001, 40, 284–310.
28. Eliel, E. L.; Wilen, S. H.; Mander, L. N. Stereochemistry of Organic Compounds;
John Wiley & Sons: New York, 1994.
At first, 0.5 g of 10% Pd/C was placed in a 50 mL round-bot-
tomed flask and was carefully wetted with 10 mL of ethanol. Then,
0.650 g of 9 was dissolved in 10 mL of ethanol and was slowly
added to the flask. The solution was sparged with hydrogen gas
for 15 min and then placed under a hydrogen blanket for 24 h with
rapid stirring. The reaction mixture was filtered through a Celite
pad to remove the Pd/C and concentrated in vacuo. The residue
was dissolved in 10% HCl and washed three times with CH2Cl2,
pH adjusted to 9 with NaOH, and extracted with CH2Cl2. The result-
ing residue was concentrated in vacuo to give a white hygroscopic
amorphous solid. Polarimetry was performed in 1.21 M HCl. Due to
the hygroscopic nature of 10, an accurate mass of the sample was
29. He, L.; Beesley, T. E. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 1075–1114.
30. Chiral Separations by Liquid Chromatography; Ahuja, S., Ed.; ACS: Washington,
DC, 1991; Vol. 471,.
31. Henderickx, H. J. W.; Duchateau, A. L. L.; Raemakers-Franken, P. C. J.
Chromatogr., A 2003, 1020, 69–74.
difficult to obtain. The levorotary direction of rotation
21:7
½
aꢃ
¼ ꢁ0:1 (c 1.2 M, HCl)) of 10 matched that of an authentic
obs
sample. 1H NMR (300 MHz, CD3OD) 1.26 (3H, t, J = 7 Hz), 1.54
(3H, s), 2.95 (1H, d, J = 14 Hz), 3.15 (1H, d, J = 14 Hz), 4.23 (2H,
m), 6.73 (2H, d, J = 9 Hz), 6.97 (2H, d, J = 9 Hz).
32. Sajonz, P.; Schafer, W.; Gong, X.; Shultz, S.; Rosner, T.; Welch, C. J. J.
Chromatogr., A 2007, 1145, 149–154.
33. Parker, D. Chem. Rev. 1991, 91, 1441–1457.
34. Taji, H.; Watanabe, M.; Harada, N.; Naoki, H.; Ueda, Y. Org. Lett. 2002, 4, 2699–
2702.
Acknowledgments
35. Cawley, A.; Duxbury, J. P.; Kee, T. P. Tetrahedron: Asymmetry 1998, 9, 1947–
1949.
36. Reetz, M. T.; Eipper, A.; Tielmann, P.; Mynott, R. Adv. Synth. Catal. 2002, 344,
1008–1016.
37. Reetz, M. T.; Tielmann, P.; Eipper, A.; Ross, A.; Schlotterbeck, G. Chem. Commun.
2004, 1366–1367.
38. Folmer-Andersen, J. F.; Lynch, V. M.; Anslyn, E. V. J. Am. Chem. Soc. 2005, 127,
7986–7989.
39. Zhu, L.; Anslyn, E. V. J. Am. Chem. Soc. 2004, 126, 3676–3677.
40. Zhu, L.; Shabbir, S. H.; Anslyn, E. V. Chem. Eur. J. 2007, 13, 99–104.
41. Zhu, L.; Zhong, Z.; Anslyn, E. V. J. Am. Chem. Soc. 2005, 127, 4260–4269.
42. Nieto, S.; Lynch, V. M.; Anslyn, E. V.; Kim, H.; Chin, J. J. Am. Chem. Soc. 2008, 130,
9232–9233.
We would like to thank the National Science Foundation
(MCB0639817) for support of this work and (CHE 0639208 and
DBI 0619455) for funds to acquire the MS facilities used in this
study. We would also like to thank the Department of Chemistry
and Biochemistry at USM for start-up funds. DAR would like to
thank the Department of Education for a GAANN Fellowship
(#P200A060323). We would also like to thank Mrs. Tina Masterson
for reviewing the manuscript prior to submission.
43. Berkowitz, D. B.; Maiti, G. Org. Lett. 2004, 6, 2661–2664.
44. Berkowitz, D. B.; Shen, W.; Maiti, G. Tetrahedron: Asymmetry 2004, 15, 2845–
2851.
45. Dey, S.; Karukurichi, K. R.; Shen, W.; Berkowitz, D. B. J. Am. Chem. Soc. 2005,
127, 8610–8611.
46. Sangeeta, D.; Douglas, R. P. C. H.; David, B. B. Angew. Chem., Int. Ed. 2007, 46,
7010–7014.
47. Tielmann, P.; Boese, M.; Luft, M.; Reetz, M. T. Chem. Eur. J. 2003, 9, 3882–
3887.
48. Guo, J.; Wu, J.; Siuzdak, G.; Finn, M. G. Angew. Chem., Int. Ed. 1999, 38, 1755–
1757.
49. Shen, Z.; Yao, S.; Crowell, J. E.; Siuzdak, G.; Finn, M. G. Isr. J. Chem. 2001, 41,
313–316.
50. Yao, S.; Meng, J. C.; Siuzdak, G.; Finn, M. G. J. Org. Chem. 2003, 68, 2540–2546.
51. Díaz, D. D.; Yao, S.; Finn, M. G. Tetrahedron Lett. 2001, 42, 2617–2619.
52. Finn, M. G. Chirality 2002, 14, 534–540.
53. Markert, C.; Rösel, P.; Pfaltz, A. J. Am. Chem. Soc. 2008, 130, 3234–3235.
54. Reetz, M. T.; Becker, M. H.; Klein, H.-W.; Stöckigt, D. Angew. Chem., Int. Ed. 1999,
38, 1758–1761.
55. Schrader, W.; Eipper, A.; Pugh, D. J.; Reetz, M. T. Can. J. Chem. 2002, 80, 626–
632.
56. Andersen, K. K.; Gash, D. M.; Robertson, J. D. In Asymmetric Synthesis; Morrisin,
J. D., Ed.; Academic: New York, 1983; pp 45–58.
57. Carrea, G.; Ottolina, G.; Riva, S. Trends Biotechnol. 1995, 13, 63–70.
58. For an example of TRIS improving % ee see: Boutelje, J.; Hjalmarsson, M.; Hult,
K.; Lindbäck, M.; Norin, T. Bioorg. Chem. 1988, 16, 364–375.
59. For an example of TRIS improving % ee see: Mattson, A.; Boutelje, J.; Csöregh, I.;
Hjalmarsson, M.; Jacobsson, U.; Lindbäck, M.; Norin, T.; Szmulik, P.; Hult, K.
Bioorg. Med. Chem. 1994, 2, 501–508.
References
1. Bornscheuer, U. T.; Kazlauskas, R. J. Hydrolases in Organic Synthesis: Regio- and
Stereoselective Biotransformations, 2nd ed.; Wiley: Strauss, 2006.
2. Faber, K. Biotransformations in Organic Chemistry, 5th ed.; Springer: Berlin,
2004.
3. Chikusa, Y.; Hirayama, Y.; Ikunaka, M.; Inoue, T.; Kamiyama, S.; Moriwaki, M.;
Nishimoto, Y.; Nomoto, F.; Ogawa, K.; Ohno, T.; Otsuka, K.; Sakota, A. K.;
Shirasaka, N.; Uzura, A.; Uzura, K. Org. Proc. Res. Dev. 2003, 7, 289–296.
4. Masterson, D. S.; Roy, K.; Rosado, D. A.; Fouche, M. J. Pept. Sci. 2008, 14, 1151–
1162.
5. Björkling, F.; Boutelje, J.; Gatenbeck, S.; Hult, K.; Norin, T.; Szmulik, P.
Tetrahedron 1985, 41, 1347–1352.
6. Kedrowski, B. L. J. Org. Chem. 2003, 68, 5403–5406.
7. Fadel, A.; Garcia-Argote, S. Tetrahedron: Asymmetry 1996, 7, 1159–1166.
8. Berkowitz, D. B.; Jahng, W.-J.; Pedersen, M. L. Bioorg. Med. Chem. Lett. 1996, 6,
2151–2156.
9. Karukurichi, K. R.; de la Salud-Bea, R.; Jahng, W. J.; Berkowitz, D. B. J. Am. Chem.
Soc. 2007, 129, 258–259.
10. Fadel, A.; Arzel, P. Tetrahedron: Asymmetry 1997, 8, 371–374.
11. Lange, S.; Musidlowska, A.; Schmidt-Dannert, C.; Schmitt, J.; Bornscheuer, U. T.
ChemBioChem. 2001, 2, 576–582.
12. Musidlowska, A.; Lange, S.; Bornscheuer, U. T. Angew. Chem., Int. Ed. 2001, 40,
2851–2853.
13. Adachi, K.; Kobayashi, S.; Ohno, M. Chimia 1986, 40, 311–331.
14. Bennett, D. J.; Buchanan, K. I.; Cooke, A.; Epemolu, O.; Hamilton, N. M.;
Hutchinson, E. J.; Mitchell, A. J. Chem. Soc., Perkin Trans. 1 2001, 4, 362–365.
ˇ
´
15. Mohr, P.; Waespe-Šarcevic, N.; Tamm, C.; Gawronska, K.; Gawronski, J. K. Helv.
Chim. Acta 1983, 66, 2501–2511.
16. Moorlag, H.; Kellogg, R. M.; Kloosterman, M.; Kaptein, B.; Kamphuis, J.;
Schoemaker, H. E. J. Org. Chem. 1990, 55, 5878–5881.
17. Provencher, L.; Wynn, H.; Jones, J. B.; Krawczyk, A. R. Tetrahedron: Asymmetry
1993, 4, 2025–2040.
60. The authors realize that 103% ee is impossible. The value is obtained following
the correction for the probe purity.
61. Domínguez de María, P.; Kossmann, B.; Potgrave, N.; Buchholz, S.; Trauthwein,
H.; May, O.; Gröger, H. Synlett 2005, 1746–1748.
62. Wolff, O.; Waldvogel, S. R. Synthesis 2004, 1303–1305.
18. Tamm, C. Pure Appl. Chem. 1992, 64, 1187–1191.