COMMUNICATIONS
diazonium salts and triazenes, see: H. Zollinger, Diazo Chemistry,
VCH, Weinheim, 1994, pp. 385 ± 404; h) alkyne couplings: M. M.
Haley S. C. Brand, J. J. Pak, Angew. Chem. 1997, 109, 863 ± 866;
Angew. Chem. Int. Ed. Engl. 1997, 36, 835 ± 866; i) parallel, identical
experiments both in solution and on solid phase showed, that the
yields and purities are exceedingly higher using resin chemistry.
[7] O. Loiseleur, M. Hayashi, N. Schmees, A. Pfaltz, Synthesis 1997, 1338 ±
1345, and references therein.
be obtained without purification. For preparative purposes
involving chromatographic purification higher boiling com-
ponents are also accessible.[11]
This cleavage ± cross-coupling reaction is in all cases salt-
free, that is the exposed resin 2 functions as a ªscavenger-
resinº for the trifluoroacetic acid. The filtered, slightly
yellowish resin is, after washing, active for coupling steps
with diazonium salts and can therefore be recycled.
[8] X. H. Ouyang, R. W. Armstrong, M. M. Murphy, J. Org. Chem. 1998,
63, 1027 ± 1032.
In conclusion, this salt-free cleavage ± cross-coupling strat-
egy allows the clean synthesis of a series of (cyclo)alkenyl-,
alkynyl-, (cyclo)alkyl-, and aryl-substituted (hetero)arene
derivatives and is especially suitable for automated synthesis.
This building system comprising virtually any aminoarene or
nitroarene after their reduction as well as alkenes or alkynes
allows synthesis of highly lipophilic molecules and tolerates
most functional groups.[4, 12, 13] Multicomponent Heck reac-
tions (domino Heck Diels ± Alder reaction, Heck ± Stille
reaction etc.)[14] should be possible in this context and might
lead to a higher diversification.
[9] a) S. C. Schurer, S. Blechert, Synlett 1998, 166 ± 167, and references
therein; b) J. C. Nelson, J. K. Young, J. S. Moore, J. Org. Chem. 1996,
61, 8160 ± 8168; c) for
a functionalizing cleavage: S. Bräse, J.
Köbberling, D. Enders, R. Lazny, M. Wang, S. Brandtner, Tetrahedron
Lett. 1999, 40, 2105 ± 2108.
[10] See also: A. de Meijere, S. Bräse in Transition Metal Catalysed
Reactions (Eds.: S. Murahashi, S. G. Davies), Blackwell Sciences, 1999,
pp. 99 ± 131.
[11] Geminal substituted alkenes like camphene are suitable as substrates.
Methyl 1-cyclohexenecarboxylate as novel component for Heck
reactions furnished as a trisubstituted alkene the expected product
in low yields and purities (65%).
[12] For the synthesis of highly functionalized triazenes in the total
synthesis of vancomycin: a) K. C. Nicolaou, C. N. C. Boddy, S.
Natarajan, T.-Y. Yue, H. Li, S. Bräse, J. M. Ramanjulu, J. Am. Chem.
Soc. 1997, 119, 3421 ± 3422; b) K. C. Nicolaou, M. Takayanagi, N. F.
Jain, S. Natarajan, A. E. Koumbis, T. Bando, J. M. Ramanjulu, Angew.
Chem. 1998, 110, 2881 ± 2883; Angew. Chem. 1998, 37, 2717, and
references therein.
[13] All new, nonpolymeric compounds were completely characterized
(1H NMR, 13C NMR, IR, MS, elemental analysis, or HRMS),
literature known compounds were compared with their spectroscop-
ical data.
Received: November 12, 1998 [Z12651IE]
German version: Angew. Chem. 1999, 111, 1139 ± 1142
Keywords: cross-coupling ´ Heck reactions ´ solid-phase
synthesis ´ triazenes
[1] a) E. M. Gordon, R. W. Barrett, W. J. Dower, S. P. Fodor, M. A.
Gallop, J. Med. Chem. 1994, 37, 1385 ± 1401; b) L. A. Thompson, J. A.
Ellman, Chem. Rev. 1996, 96, 555 ± 600; c) J. S. Früchtel, G. Jung,
Angew. Chem. 1996, 108, 19 ± 46; Angew. Chem. Int. Ed. Engl. 1996,
35, 17 ± 42; d) F. Balkenhohl, C. von dem Bussche-Hünnefeld, A.
Lansky, C. Zechel, Angew. Chem. 1996, 108, 2437 ± 2487; Angew.
Chem. Int. Ed. Engl. 1996, 35, 2288 ± 2337; e) P. H. H. Hermkens,
H. C. J. Ottenheijm, D. Rees, Tetrahedron 1997, 53, 5643 ± 5678;
f) Combinatorial Peptide and Nonpeptide Libraries (Ed.: G. Jung),
VCH, Weinheim, 1996; g) Combinatorial Chemistry (Eds.: S. R.
Wilson, A. W. Czarnik), Wiley-Interscience, New York, 1997, and
references therein.
[14] a) S. Bräse, A. de Meijere, Angew. Chem. 1995, 107, 2741 ± 2743;
Angew. Chem. Int. Ed. Engl. 1995, 34, 2545 ± 2547; b) M. Catellani,
G. P. Chiusoli, A. Mari, J. Organomet. Chem. 1984, 275, 129 ± 138;
c) M. Kosugi, H. Tamura, H. Sano, T. Migita, Tetrahedron 1989, 45,
961 ± 968.
[2] a) J. A. Ellman, Chimia 1996, 50, 260 ± 261; b) M. J. Kurth, Chimia
1996, 50, 261 ± 266; c) C. Blackburn; F. Albericio, S. A. Kates, Drugs
Future 1997, 22, 1007 ± 1025; d) A. D. Baxter, Curr. Opin. Chem. Biol.
1997, 1, 79 ± 85; e) A. M. M. Mjalli, B. E. Toyonaga in High Through-
put Screening: The Discovery of Bioactive Substances (Ed.: J. P.
Devlin), Marcel Dekker, New York, 1997, pp. 209 ± 222; f) D. J.
Gravert, K. D. Janda, Curr. Opin. Chem. Biol. 1997, 1, 107 ± 113.
[3] Recent examples: a) B. A. Lorsbach, J. T. Bagdanoff, R. B. Miller,
M. J. Kurth, J. Org. Chem. 1998, 63, 2244 ± 2250; b) C. G. Blettner,
W. A. König, W. Stenzel, T. Schotten, Synlett 1998, 295 ± 297; c) S. K.
Kang, J. S. Kim, S. K. Yoon, K. H. Lim, S. S. Yoon, Tetrahedron Lett.
1998, 39, 3011 ± 3012. d) M. A. Lago, T. T. Nguyen, P. Bhatnagar,
Tetrahedron Lett. 1998, 39, 3885 ± 3888; e) S. Chamoin, S. Houlds-
worth, V. Snieckus, Tetrahedron Lett. 1998, 39, 4175 ± 4178; f) S.
Chamoin, S. Houldsworth, C. G. Kruse, W. I. Bakker, V. Snieckus,
Tetrahedron Lett. 1998, 39, 4179 ± 4182; g) E. W. Baxter, J. K. Rueter,
S. O. Nortey, A. B. Reitz, Tetrahedron Lett. 1998, 39, 979 ± 982.
[4] S. Bräse, D. Enders, J. Köbberling, F. Avemaria, Angew. Chem. 1998,
110, 3614 ± 3616; Angew. Chem. Int. Ed. 1998, 37, 3413 ± 3415.
[5] S. Bräse, A. de Meijere in Metal-catalyzed Cross-Coupling Reactions
(Eds.: F. Diederich, P. J. Stang), WILEY-VCH, Weinheim, 1998,
pp. 99 ± 167, and references therein.
An Oxidation-Labile Traceless Linker for
Solid-Phase Synthesis**
Frank Stieber, Uwe Grether, and Herbert Waldmann*
The combinatorial synthesis of small-molecule libraries on
polymeric supports is a powerful method for the discovery
and development of new molecules with a predetermined
profile of properties.[1] Vital to all solid-phase methodologies
is the design and utilization of suitable anchor groups (linkers)
that allow facile attachment, functionalization, and release of
the molecules of interest. Typically, linkage to the polymeric
support is achieved through functionality already present in
the target molecule. However, after cleavage from the support
[*] Prof. Dr. H. Waldmann, Dipl.-Chem. F. Stieber,
Dipl.-Chem. U. Grether
Institut für Organische Chemie der Universität
Richard-Willstätter-Allee 2, D-76128 Karlsruhe (Germany)
Fax: (49)721-608-4825
[6] a) S. Sengupta, S. Bhattacharya, J. Chem. Soc. Perkin Trans. 1 1993,
1934 ± 1943; b) S. Sengupta, S. Bhattacharya, Tetrahedron Lett. 1995,
36, 4475 ± 4478; c) S. Bhattacharya, S. Majee; R. Mukherjee, S.
Sengupta, Synth. Commun. 1995, 25, 651 ± 657; d) M. Beller, K.
Kühlein, Synlett 1995, 441 ± 442; e) S. Sengupta, S. Bhattacharya,
Synth. Commun. 1996, 26, 231 ± 236; f) G. Mehta, S. Sengupta,
Tetrahedron Lett. 1996, 37, 8625 ± 8626; g) for the chemistry of
[**] This research was supported by the Bundesministerium für Bildung
und Forschung, the BASF AG, and the Fonds der Chemischen
Â
Industrie (Kekule-Stipendium for F. Stieber).
Angew. Chem. Int. Ed. 1999, 38, No. 8
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999
1433-7851/99/3808-1073 $ 17.50+.50/0
1073