Organic Letters
Letter
(3) (a) Buer, B. C.; Marsh, E. N. Protein Sci. 2012, 21, 453.
(b) Hunter, L.; Butler, S.; Ludbrook, S. B. Org. Biomol. Chem. 2012,
10, 8911. (c) Jackel, C.; Koksch, B. Eur. J. Org. Chem. 2005, 2005,
4483. (d) Kokhan, S. O.; Tymtsunik, A. V.; Grage, S. L.; Afonin, S.;
Babii, O.; Berditsch, M.; Strizhak, A. V.; Bandak, D.; Platonov, M. O.;
Komarov, I. V.; Ulrich, A. S.; Mykhailiuk, P. K. Angew. Chem., Int. Ed.
2016, 55, 14788. (e) Jackel, C.; Salwiczek, M.; Koksch, B. Angew.
Chem., Int. Ed. 2006, 45, 4198. (f) Berger, A. A.; Voller, J. S.; Budisa,
N.; Koksch, B. Acc. Chem. Res. 2017, 50, 2093. (g) Gillis, E. P.;
Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med.
Chem. 2015, 58, 8315. (h) Salwiczek, M.; Nyakatura, E. K.; Gerling,
U. I.; Ye, S.; Koksch, B. Chem. Soc. Rev. 2012, 41, 2135. (i) Robalo, J.
R.; Huhmann, S.; Koksch, B.; Vila Verde, A. Chem. 2017, 3, 881.
(4) Wu, Y.; Li, Y. H.; Li, X.; Zou, Y.; Liao, H. L.; Liu, L.; Chen, Y.
G.; Bierer, D.; Hu, H. G. Chem. Sci. 2017, 8, 7368.
(5) (a) Annedi, S. C.; Li, W.; Samson, S.; Kotra, L. P. J. Org. Chem.
2003, 68, 1043. (b) Takeuchi, Y.; Kirihara, K.; Shibata, N.; Kirk, K. L.
Chem. Commun. 2000, 785. (c) Hu, L.; Che, C.; Tan, Z.; Zhu, G.
Chem. Commun. 2015, 51, 16641.
(6) (a) Mohar, B.; Baudoux, M.; Plaquevent, J. C.; Cahard, D.
Angew. Chem., Int. Ed. 2001, 40, 4214. (b) Yamamoto, T.; Suzuki, Y.;
Ito, E.; Tokunaga, E.; Shibata, N. Org. Lett. 2011, 13, 470. (c) Mohar,
B.; Sterk, D.; Ferron, L.; Cahard, D. Tetrahedron Lett. 2005, 46, 5029.
(7) Chen, G.; Song, J.; Yu, Y.; Luo, X.; Li, C.; Huang, X. Chem. Sci.
2016, 7, 1786.
Based on the above collected data, along with the previously
proposed mechanisms in Figure 1A9 and recent fluoride-
coupled SET reactions,20−22 a catalytic cycle for this reaction is
described in Figure 2. The coordination of Cu(II) and the
alkalinity of Ag2CO3 promote the generation of INT1 and its
enolate intermediate INT2. Highly nucleophilic INT3 existing
in equilibrium with its tautomer INT29 promotes the
production of C1 using selectfluor. Then, a SET oxidative
addition generates the Cu(III) complex C2.20,21 A H-ion
transfer of C2 then generates more stable INT4, following the
reductive elimination which afforded the product 2ai. The
associated Cu(I) is reoxidized to Cu(II) by excessive Ag2CO3.
Meanwhile, the β-H elimination of INT3 is inhibited by L5,
which may occur by occupying the empty metal orbital used to
break C(β)−H.15
In summary, the first direct α-C(sp3)−H fluorination of the
α-AA derivatives has been realized by our coordinating Cu(II)
catalytic method, which provides a wide range of α-AA
substrates, including aliphatic and benzylic methyne α-
C(sp3)−H with rich substituents. Mechanism studies revealed
a Cu(II) catalytic SET oxidative addition process, in which a
key fluoride-coupled Cu(II) charge transfer complex C1 is
detected by 19F NMR. The β-H elimination byproduct is
effectively inhibited by the (R)-3-hydroxy quinuclidine ligand.
Mild conditions for efficient removal of the AG are disclosed
without affecting newly introduced C(α)−F, which allows us
to directly synthesize and separate the α-fluorinated dipeptide
derivatives with a single configuration. This work should
potentially feature in forming corresponding peptides and
proteins.
(8) Noisier, A. F.; Brimble, M. A. Chem. Rev. 2014, 114, 8775.
(9) Bellina, F.; Rossi, R. Chem. Rev. 2010, 110, 1082.
(10) (a) Lee, S.; Beare, N. A.; Hartwig, J. F. J. Am. Chem. Soc. 2001,
123, 8410. (b) Liu, X. X.; Hartwig, J. F. Org. Lett. 2003, 5, 1915.
(11) (a) Trost, B. M.; Czabaniuk, L. C. J. Am. Chem. Soc. 2012, 134,
5778. (b) Trost, B. M.; Dogra, K. J. Am. Chem. Soc. 2002, 124, 7256.
(12) (a) Li, K.; Tan, G.; Huang, J.; Song, F.; You, J. Angew. Chem.,
Int. Ed. 2013, 52, 12942. (b) Li, K.; Wu, Q.; Lan, J.; You, J. Nat.
Commun. 2015, 6, 8404.
(13) He, G.; Wang, B.; Nack, W. A.; Chen, G. Acc. Chem. Res. 2016,
49, 635.
(14) Park, H.; Verma, P.; Hong, K.; Yu, J. Nat. Chem. 2018, 10, 755.
(15) (a) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119,
12382. (b) Palucki, M.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119,
11108.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(16) (a) Shendage, D. M.; Frohlich, R.; Haufe, G. Org. Lett. 2004, 6,
3675. (b) Talbot, E. P.; Fernandes, T. d. A.; McKenna, J. M.; Toste,
F. D. J. Am. Chem. Soc. 2014, 136, 4101. (c) Liu, Y. J.; Liu, Y. H.;
Zhang, Z. Z.; Yan, S. Y.; Chen, K.; Shi, B. F. Angew. Chem., Int. Ed.
2016, 55, 13859. (d) van der Heijden, G.; Jong, J. A.; Ruijter, E.;
Orru, R. V. Org. Lett. 2016, 18, 984.
(17) Bechara, W. S.; Pelletier, G.; Charette, A. B. Nat. Chem. 2012,
4, 228.
(18) Zhang, Q.; Yin, X. S.; Chen, K.; Zhang, S. Q.; Shi, B. F. J. Am.
Chem. Soc. 2015, 137, 8219.
(19) (a) Lv, Y.; Wang, X.; Cui, H.; Sun, K.; Pu, W.; Li, G.; Wu, Y.;
He, J.; Ren, X. RSC Adv. 2016, 6, 74917. (b) Wu, S. W.; Liu, F. Org.
Lett. 2016, 18, 3642. (c) Wang, C.; Cai, J.; Zhang, M.; Zhao, X. J. Org.
Chem. 2017, 82, 1260.
(20) Danahy, K. E.; Cooper, J. C.; Van Humbeck, J. Angew. Chem.,
Int. Ed. 2018, 57, 5134.
(21) Yamamoto, K.; Li, J.; Garber, J. A. O.; Rolfes, J. D.; Boursalian,
G. B.; Borghs, J. C.; Genicot, C.; Jacq, J.; van Gastel, M.; Neese, F.;
Ritter, T. Nature 2018, 554, 511.
Experimental procedures, spectroscopic data, and copies
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Author Contributions
∥Q.W. and Y.M. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We gratefully acknowledge the funding support of grants from
the National Natural Science Foundation of China (Nos.
81573289, 81773575, and 81773114) and the National Key
R&D Program of China (2016YFE0113700).
(22) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
REFERENCES
■
(1) Henninot, A.; Collins, J. C.; Nuss, J. M. J. Med. Chem. 2018, 61,
1382.
(2) Zhao, L.; Basle, O.; Li, C. J. Proc. Natl. Acad. Sci. U. S. A. 2009,
106, 4106.
D
Org. Lett. XXXX, XXX, XXX−XXX