Organometallics 2000, 19, 2031-2035
2031
High -P r essu r e NMR Stu d ies on th e Alter n a tin g
Cop olym er iza tion of P r op en e w ith Ca r bon Mon oxid e
Ca ta lyzed by a P a lla d iu m (II) Com p lex of a n
Un sym m etr ica l P h osp h in e-P h osp h ite Liga n d
Kyoko Nozaki* and Tamejiro Hiyama
Department of Material Chemistry, Graduate School of Engineering, Kyoto University,
Yoshida, Sakyo-ku, Kyoto 606-8501, J apan
Smita Kacker and Istva´n T. Horva´th†
Corporate Research Laboratory, Exxon Research & Engineering Company,
Annandale, New J ersey 08801
Received December 13, 1999
When high-pressure NMR techniques are employed, the following two facts are revealed.
(1) The cis/trans isomerization from (SP-4-4)-[Pt(CH3)(CO)(L1)][BAr4] (8a ; L1 ) (R,S)-
BINAPHOS; Ar ) 3,5-(CF3)2C6H3) to the more stable SP-4-3 isomer (8b) is faster than CO
insertion into either 8a or 8b, the CO insertion being reversible. (2) For the PdII-L1-catalyzed
copolymerization of propene and CO, there exist at least two major resting states, most
probably acylpalladium, (SP-4-3)-[Pd(COR)(L2)(L1)][BAr4] (3; L2 ) CH3CN, CO), and alkyl-
palladium, [Pd{CH2CH(CH3)C(dO)R}(L1)][BAr4] (5a ).
In tr od u ction
BINAPHOS to be an efficient catalyst for the asym-
metric copolymerization of propene (3 atm) with carbon
monoxide (20 atm). Highly isotactic polyketone with
high enantioselectivity was obtained using [Pd(CH3)(CH3-
CN){(R,S)-BINAPHOS}][B{3,5-(CF3)2C6H3}4] (1).4 The
ligand is an unsymmetrical cis-bidentate phosphine-
phosphite, and accordingly, two nonequivalent coordi-
nation sites are available for reactions on the tetraco-
ordinated palladium species. Mechanistic aspects of the
copolymerization were studied in detail, and the com-
plexes marked “observed” in Scheme 1 were detected
by stepwise NMR studies under ambient pressure.
Namely, treatment of the methylpalladium compound
1 with CO in the absence of propene gave the acylpal-
ladium species 3-I, and exposure of 3-I to propene
afforded a 4:1 mixture of alkylpalladium complexes 5a -I
and 5b-I. Further, formation of the second-generation
acyl complex 3-II was detected after pressurize-depres-
surize treatment of a mixture of 5a -I and 5b-I with 20
atm of CO, and the second-generation acyl complex 5a -
II was given as an exclusive product by exposure of 3-II
to propene.
The work was then focused on the reaction pathways
between the observed complexes, such as 1 f 3-I and
3-I f 5-I in Scheme 1. The platinum complex [Pt(CH3)-
(CH3CN){(R,S)-BINAPHOS}][B{3,5-(CF3)2C6H3}4] (7)
was studied as an analogue of palladium complex 1.
Methylplatinum carbonyl 8a was obtained under 1 atm
of CO as a result of CO-acetonitrile exchange. After a
pressurize-depressurize cycle with 20 atm of CO, 8a
was transformed into 8b , the cis/trans isomer of 8a
Alternating copolymerization of olefins with CO has
attracted much attention from both academia and
industry due to the easy availability of starting materi-
als and the engineering plastic type novel properties of
the product.1 The polymerization process includes two
of the representative reactions of a palladium complex:
(1) CO insertion into an alkyl-Pd bond and (2) an olefin
insertion into an acyl-Pd bond; thus, intensive efforts
have been devoted to mechanistic studies of the reaction
by both experimental2 and theoretical approaches.3
We previously reported a cationic Pd(II) complex with
the unsymmetrical chiral phosphine-phosphite (R,S)-
† Present address: Department of Organic Chemistry, Eotvos Lo-
rand University, Pazmany Peter setany 1/A, H-1117 Budapest, Hun-
gary.
(1) (a) Drent, E.; Budzelaar, P. H. M. Chem. Rev. 1996, 96, 663. (b)
Sen, A. Acc. Chem. Res. 1993, 26, 303. (c) Nozaki, K.; Hiyama, T. J .
Organomet. Chem. 1999, 576, 248.
(2) (a) Cavell, J . K. Coord. Chem. Rev. 1996, 155, 209. (b) Yamamoto,
A. Organometallics 1995, 14, 337. (c) Brookhart, M.; Rix, F. C.;
DeSimone, J . M. J . Am. Chem. Soc. 1992, 114, 5894. (d) Rix, F. C.;
Brookhart, M.; White, P. S. J . Am. Chem. Soc. 1996, 118, 4746. (e)
Dekker, G. P. C. M.; Buijs, A.; Elsevier, C. J .; Vrieze, K.; van Leeuwen,
P. W. N. M.; Smeets, W. J . J .; Spek, A. L.; Wang, Y. F.; Stam, C. H.
Organometallics 1992, 11, 1937. (f) To´th, I.; Elsevier, C. J . J . Am.
Chem. Soc. 1993, 115, 10388. (g) van Asselt, R.; Gielens, E. E. C. G.;
Ru¨lke, R. E.; Vries, K.; Elsevier, C. J . J . Am. Chem. Soc. 1994, 116,
977. (h) van Leeuwen, P. W. N. M.; Roobeek, C. F.; van der Heijden,
H. J . Am. Chem. Soc. 1994, 116, 12117. (i) Markies, B. A.; Kruis, D.;
Rietveld, M. H. P.; Verkerk, K. A. V.; Boersma, J .; Kooijman, H.; Lakin,
M. T.; Spek, A. L.; van Koten, G. J . Am. Chem. Soc. 1995, 117, 5263.
(j) Markies, B. A.; Wijkens, P.; Dedieu, A.; Boersma, J .; Spek, A. L.;
van Koten, G. Organometallics 1995, 14, 5628. (k) Bianchini, C.; Lee,
H. M.; Meli, A.; Moneti, S.; Vizza, F.; Fontani, M.; Zanello, P.
Macromolecules 1999, 32, 4183. (l) Bianchini, C.; Lee, H. M.; Barbaro,
P.; Meli, A.; Moneti, S.; Vizza, F. New J . Chem. 1999, 23, 929. Related
studies with Pt: (m) To´th, I.; Ke´gl, T.; Elsevier, C. J .; Kolla´r, L. Inorg.
Chem. 1994, 33, 5708. (n) Ke´gl, T.; Kolla´r, L.; Radics, L. Inorg. Chim.
Acta 1997, 265, 249.
(4) (a) Nozaki, K.; Sato, N.; Tonomura, Y.; Yasutomi, M.; Takaya,
H.; Hiyama, T.; Matsubara, T.; Koga, N. J . Am. Chem. Soc. 1997, 119,
12779. (b) Nozaki, K.; Sato, N.; Takaya, H. J . Am. Chem. Soc. 1995,
117, 9911. (c) Nozaki, K.; Yasutomi, M.; Nakamoto, K.; Hiyama, T.
Polyhedron 1998, 17, 1159.
(3) (a) Svensson, M.; Matsubara, T.; Morokuma, K. Organometallics
1996, 15, 5568. (b) Margl, P.; Ziegler, T. J . Am. Chem. Soc. 1996, 118,
7337. (c) Margl, P.; Ziegler, T. Organometallics 1996, 15, 5519.
10.1021/om990985x CCC: $19.00 © 2000 American Chemical Society
Publication on Web 04/14/2000