Hydrolytic Decomposition of [NMe4][Au(CF3)2]
above. 1H and 13C NMR spectroscopic data of the [PNP] and
[K(18-crown-6)] cations matched with previously published val-
ues.[38]
[1]
a) M. Faraday, Philos. Trans. R. Soc. London 1857, 147, 145;
b) S. A. Edwards, The Nanotech Pioneers, Wiley, USA, 2006,
ISBN 978-3527312900.
AuNPs: The [NMe4][Au(CF3)2] was purified from elemental gold
residues by extracting the product in dichloromethane with a
Soxhlet apparatus. The pure [NMe4][Au(CF3)2] was stored under
argon and dark conditions to avoid any premature decomposition.
The complex was hydrolysed under continuous stirring at different
concentrations (0.5–4.0 mm). A small amount of ammonia was
added to accelerate the decomposition. The reaction mixture
turned red after 6 min and the reaction monitored by UV/Vis spec-
tra was completed after 20 min. The obtained particles were char-
acterised by UV/Vis spectroscopy and TEM and SEM measure-
ments.
[2]
[3]
[4]
[5]
[6]
[7]
P. P. Edwards, J. M. Thomas, Angew. Chem. Int. Ed. 2007, 46,
5480–5486.
G. Schmid, Cluster and Colloids: From Theory to Applications,
VCH Verlagsgesellschaft, Weinheim, Germany, 1994.
A. R. Sperling, P. R. Gil, F. Zhang, M. Zanella, W. J. Parak,
Chem. Soc. Rev. 2008, 37, 1896–1908.
J. Turkevich, P. C. Stevenson, J. Hillier, J. Phys. Chem. 1953,
57, 670–673.
J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, A.
Plech, J. Phys. Chem. B 2006, 110, 15700–15707.
M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman,
J. Chem. Soc., Chem. Commun. 1994, 801–802.
M.-C. Daniel, D. Astruc, Chem. Rev. 2004, 104, 293–346.
a) S. D. Bunge, T. J. Boyle, T. J. Headley, Nano Lett. 2003, 3,
901–905; b) J. Zeng, Y. Ma, U. Jeong, Y. Xia, J. Mater. Chem.
2010, 20, 2290–2301; c) T. Placido, R. Comparelli, F. Giannici,
P. D. Cozzoli, G. Capitani, M. Striccoli, A. Agostiano, M. L.
Curri, Chem. Mater. 2009, 21, 4192–4202.
N. Maggiarosa, W. Tyrra, D. Naumann, N. V. Kirij, Yu. L. Ya-
gupolskii, Angew. Chem. 1999, 111, 2392–2393; Angew. Chem.
Int. Ed. 1999, 38, 2252–2253.
W. Tyrra, D. Naumann, N. V. Kirij, A. A. Kolomeitsev, Yu. L.
Yagupolskii, J. Chem. Soc., Dalton Trans. 1999, 657–658.
N. V. Kirij, Yu. L. Yagupolskii, N. Maggiarosa, W. Tyrra, D.
Naumann, J. Fluorine Chem. 2001, 112, 213–218.
N. V. Pavlenko, L. A. Babadzhanova, I. I. Gerus, Yu. L. Yagu-
polskii, W. Tyrra, D. Naumann, Eur. J. Inorg. Chem. 2007,
1501–1507.
D. Naumann, N. V. Kirij, N. Maggiarosa, W. Tyrra, Yu. L. Ya-
gupolskii, M. S. Wickleder, Z. Anorg. Allg. Chem. 2004, 630,
746–751.
a) S. Aboulkacem, W. Tyrra, I. Pantenburg, J. Chem. Crys-
tallogr. 2006, 36, 141–145; b) W. Tyrra, D. Naumann, J. Fluor-
ine Chem. 2004, 125, 823–830.
a) W. Tyrra, D. Naumann, Yu. L. Yagupolskii, J. Fluorine
Chem. 2003, 123, 183–187; b) W. Tyrra, N. V. Kirij, D. Nau-
mann, Yu. L. Yagupolskii, J. Fluorine Chem. 2004, 125, 1435–
1438.
H. Schmidbauer, A. Schier, Science Synthesis 2004, 3, 691–761.
A. Gräfe, T. Kruck, J. Organomet. Chem. 1996, 506, 31–35.
a) R. D. Sanner, J. H. Satcher Jr., M. W. Droege, Organometal-
lics 1989, 8, 1498–1506; b) H. K. Nair, J. A. Morrison, J. Or-
ganomet. Chem. 1989, 376, 149–164.
N. H. Dryden, J. G. Shapter, L. L. Coatsworth, P. R. Norton,
R. J. Puddephatt, Chem. Mater. 1992, 4, 979–981.
H. Lange, D. Naumann, J. Fluorine Chem. 1984, 26, 435–444.
H. Lange, D. Naumann, J. Fluorine Chem. 1984, 26, 1–18.
Y. Usui, J. Noma, M. Hirano, S. Komiya, Inorg. Chim. Acta
2000, 309, 151–154.
E. Bernhardt, M. Finze, H. Willner, J. Fluorine Chem. 2004,
125, 967–973.
W. Tyrra, M. M. Kremlev, D. Naumann, H. Scherer, H.
Schmidt, B. Hoge, I. Pantenburg, Yu. L. Yagupolskii, Chem.
Eur. J. 2005, 11, 6514–6518.
D. Zhu, S. V. Lindeman, J. K. Kochi, Organometallics 1999, 18,
2241–2248.
U. Flörke, H.-J. Haupt, P. G. Jones, Acta Crystallogr., Sect. C
1996, 52, 609–611.
I. Krossing, I, Raabe, Angew. Chem. 2004, 116, 2116–2142; An-
gew. Chem. Int. Ed. 2004, 43, 2066–2090.
K. O. Christe, W. W. Wilson, J. Fluorine Chem. 1990, 46, 339–
342.
A. S. K. Hashmi, G. L. Hutchings, Angew. Chem. 2006, 118,
8064–8105; Angew. Chem. Int. Ed. 2006, 45, 7896–7936.
Single-Crystal X-ray Diffraction Study: Single crystals of
[PNP][Au(CF3)2] were obtained upon cooling saturated CH2Cl2
solutions to approximately –25 °C over several weeks. Data collec-
tion for X-ray crystal-structure determination were performed with
a STOE IPDS II diffractometer using graphite-monochromated
Mo-Kα radiation (λ = 71.073 pm). The data were corrected for Lo-
rentz and polarisation effects. A numerical absorption correction
based on crystal-shape optimisation was applied for all data.[39] The
programs used in this work are Stoe’s X-Area,[40] including X-RED
and X-Shape for data reduction and absorption correction[41] and
the WinGX suite of programs,[42] including SIR-92[43] and
SHELXL-97[44] for structure solution and refinement. The hydro-
gen atoms were placed in idealised positions and constrained to
ride on their parent atom. The last cycles of refinement included
atomic positions for all atoms, anisotropic thermal parameters for
all non-hydrogen atoms and isotropic thermal parameters for all
hydrogen atoms. Materials for publication were prepared using
DIAMOND.[45]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
CCDC-785918 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
Crystal
873.56 gmol–1; diffractometer IPDS-II, T = 170(2) K; 2θmax
54.8°; 0°ՅωՅ180°, φ = 0°, 0°ՅωՅ58°, φ = 90°, Δω = 2°, 119
images; –12ՅhՅ12, –13ՅkՅ13, –21ՅlՅ21; ρcalcd.
1.689 gcm–3; 16920 measured reflections of which 7502 were sym-
metrically independent; Rint 0.0526; F(000) 856; μ =
Data
for
[PNP][Au(CF3)2]:
C38H30NP2F6Au:
=
[17]
[18]
[19]
=
=
=
–1
¯
4.437 mm ; triclinic, P1 (no. 2), a = 990.7(1) pm, b = 1081.6(1) pm,
c = 1717.5(2) pm, α = 85.31(1)°, β = 74.83(1)°, γ = 75.28(1)°, V =
1717.7(7)ϫ106 pm3, Z = 2; R1/wR2 for 6033 reflections with
[Io Ͼ2σ(Io)]: 0.0367/0.0866, for all data: 0.0506/0.1004; Sall = 1.032.
[20]
[21]
[22]
[23]
Acknowledgments
[24]
[25]
The authors would like to thank the University of Cologne and the
European Union (EU), project “NANOMMUNE” funded within
the framework of the NMP call of the seventh framework pro-
gramme (FP7-NMP-2007-SMALL-1, grant number 214281) for
providing the infrastructure and financial assistance. Thanks are
due to Professor Dr. Dieter Naumann for valuable discussions. We
express our gratitude to our advanced students Gulara Hamidova,
Iana Sterman, Sabine Grupe and Stefan Schüller for doing some
part of the experimental work. We are indebted to Professor Dr.
Axel Klein for interpreting the cyclic voltammetry data, to Dr. Ma-
thias Schäfer (Institut für Organische Chemie) for recording the
ESI mass spectra and to Osman Arslan for the TEM measure-
ments.
[26]
[27]
[28]
[29]
[30]
Eur. J. Inorg. Chem. 2011, 273–280
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
279