The Journal of Organic Chemistry
Page 10 of 11
Niederkoordinierte Hauptgruppenelemente. J. Organomet. Chem.
Chem. -Eur. J. 2006, 12, 8696-8707. (i) Bresien, J.; Goicoechea, J. M.;
1989, 366, 73-85.
Hinz, A.; Scharnholz, M. T.; Schulz, A.; Suhrbier, T.; Villinger, A.
Increasing Steric Demand through Flexible Bulk Primary
Phosphanes with 2,6-Bis(benzhydryl)phenyl Backbones. Dalton
Trans. 2019, 48, 3786-3794. (j) Taylor, L. J.; Surgenor, B. A.;
Wawrzyniak, P.; Ray, M. J.; Cordes, D. B.; Slawin, A. M. Z.; Kilian, P.
Spontaneous Dehydrocoupling in peri-Substituted Phosphine–
Borane Adducts. Dalton Trans. 2016, 45, 1976-1986. (k) Davies, L.
H.; Stewart, B.; Harrington, R. W.; Clegg, W.; Higham, L. J. Air ‐
Stable, Highly Fluorescent Primary Phosphanes. Angew. Chem. Int.
Ed. 2012, 51, 4921-4924. (l) Ghalib, M.; Jones, P. G.; Lysenko, S.;
Heinicke, J. W. Enantiomerically Pure N Chirally Substituted 1,3-
Benzazaphospholes: Synthesis, Reactivity toward tBuLi, and
Conversion to Functionalized Benzazaphospholes and Catalytically
Useful Dihydrobenzazaphospholes. Organometallics 2014, 33,
804-816. (m) Twamley, B.; Hwang, C.; Hardman, N. J.; Power, P. P.
Sterically Encumbered Terphenyl Substituted Primary Pnictanes
ArEH2 and Their Metallated Derivatives ArE(H)Li (Ar=C6H3-2,6-
Trip2; Trip=2,4,6-triisopropylphenyl; E=N, P, As, Sb). J. Organomet.
Chem. 2000, 609, 152-160. (n) Reiter, S. A.; Nogai, S. D.;
Schmidbaur, H. Multifunctional Phosphorus Compounds:
1
2
3
4
5
6
7
8
(21) Abe, M.; Toyota, K.; Yoshifuji, M. Preparation and
Properties of Captodative 1-Amino-2-aryldiphosphenes Carrying
Bis(trifluoromethyl)phenyl or Tris(trifluoromethyl)phenyl Group.
Chem. Lett. 1992, 2349-2352.
(22) Dumitrescu, A.; Gornitzka, H.; Schoeller, W. W.;
Bourissou, D.; Bertrand, G.
Featuring the
A
Crystalline Phosphenium Salt
Electron-Withdrawing 2,6-
Bis(trifluoromethyl)phenyl Group. Eur. J. Inorg. Chem. 2002, 1953-
1956.
(23) Rudzevich, V. L.; Gornitzka, H.; Miqueu, K.; Sotiropoulos,
J. M.; Pfister-Guillouzo, G.; Romanenko, V. D.; Bertrand, G. The First
"Naked" Primary Phosphanide Anion [ArPH]-. Angew. Chem. Int. Ed.
2002, 41, 1193-1195.
(24) Goldwhite, H.; Kaminski, J.; Millhauser, G.; Ortiz, J.;
Vargas, M.; Vertal, L.; Lappert, M. F.; Smith, S. J. Phosphorus-
Phosphorus Single or Double Bond Formation from PCl3−nRn (n = 1
or 2) and a Bis-Imidazolidine Reducing Agent. J. Organomet. Chem.
1986, 310, 21-25.
(25) Sakaki, J.; Schweizer, W. B.; Seebach, D. Catalytic
Enantioselective Hydrosilylation of Aromatic Ketones Using
Rhodium Complexes of TADDOL ‐ Derived Cyclic Phosphonites
and Phosphites. Helv. Chim. Acta 1993, 76, 2654-2665.
(26) Cowley, A. H.; Norman, N. C.; Pakulski, M. Phosphorus
Compounds Containing Sterically Demanding Groups. Inorg. Synth.
1990, 27, 235-240.
(27) Dugal-Tessier, J.; Kuhn, P. S.; Dake, G. R.; Gates, D. P.
Synthesis of Functional Phosphines with Ortho-Substituted Aryl
Groups: 2-RC6H4PH2 and 2-RC6H4P(SiMe3)2 (R=2-i-Pr- or 2-t-Bu-).
Heteroat. Chem. 2010, 21, 265-270.
(28) Stulz, E.; Maue, M.; Scott, S. M.; Mann, B. E.; Sanders, J. K.
M. Ru(II) and Rh(III) Porphyrin Complexes of Primary Phosphine-
Substituted Porphyrins. New J. Chem. 2004, 28, 1066-1072.
(29) For reviews on primary phosphines, see: (a) Katti, K. V.;
Pillarsetty, N.; Raghuraman, K. New Vistas in Chemistry and
Applications of Primary Phosphines. Top. Curr. Chem. 2003, 229,
121-141. (b) Brynda, M. Towards “User-Friendly” Heavier Primary
Pnictanes: Recent Developments in the Chemistry of Primary
Phosphines, Arsines and Stibines. Coord. Chem. Rev. 2005, 249,
2013-2034.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Molecular Structures of 1,2,4,5
Tetra(dimethoxyphosphoryl),
‐
Tetra(phosphinyl),
and
Tetra(dihydroxyphosphoryl)benzene. Z. Anorg. Allg. Chem. 2005,
631, 2595-2600. (o) Reiter, S. A.; Assmann, B.; Nogai, S. D.; Mitzel,
N.
W.;
Schmidbaur,
H.
(Benzene
‐
1,3,5
‐
‐
triyl)tris[phosphine](C6H3(PH2)3) and (Benzene
‐
1,3,5
triyl)tris[phosphonic Acid](C6H3[P(O)(OH)2]3). Absence of
Hydrogen Bonding in Solid Primary Phosphines. Helv. Chim. Acta
2002, 85, 1140-1150.
(31) There are two additional structures in the CCDC with
anomalously short P-H bonds: B(Me2)4-BODIPY-C6H4PH2 [1.05(4)
and 1.07(6) Å]; 2-PH2-2'-MeO-1,1'-Binaphthyl [0.962 and 0.963 Å].
See: (a) Davies, L. H.; Wallis, J. F.; Probert, M. R.; Higham, L. J.
Efficient Multigram Syntheses of Air-Stable, Fluorescent Primary
Phosphines via Palladium-Catalyzed Phosphonylation of Aryl
Bromides. Synthesis 2014, 46, 2622-2628. (b) Hiney, R. M.; Higham,
L. J.; Muller-Bunz, H.; Gilheany, D. G. Taming a Functional Group:
Creating Air ‐Stable, Chiral Primary Phosphanes. Angew. Chem.
Int. Ed. 2006, 45, 7248-7251.
(32) For selected examples, see: (a) Becker., V. G.; Uhl., W.;
(30) Crystallographically
characterized
primary
Wessely, H.-J. Acyl
‐
and Alkylidenephosphines. XVI.
arylphosphines: (a) Greenberg, S.; Gibson, G. L.; Stephan, D. W.
P(III)-Cyclic Oligomers via Catalytic Hydrophosphination. Chem.
Commun. 2009, 304-306. (b) Reiter, S. A.; Nogai, S. D.; Karaghiosoff,
K.; Schmidbaur, H. Insignificance of P−H···P Hydrogen Bonding:ꢀ
Structural Chemistry of Neutral and Protonated 1,8-
Di(phosphinyl)naphthalene. J. Am. Chem. Soc. 2004, 126, 15833-
15843. (c) Bartlett, R. A.; Olmstead, M. M.; Power, P. P.; Sigel, G. A.
Synthesis and Spectroscopic and X-Ray Structural Studies of the
Mesitylphosphines Ph2Mes and PHMes2 (Mes = 2,4,6-Me3C6H2) and
Their Lithium Salts [Li(THF)3PHMes] and [{Li(OEt2)PMes2}2].
Inorg. Chem. 1987, 26, 1941-1946. (d) Reiter, S. A.; Nogai, S. D.;
Schmidbaur, H. Preparation, Structure and Gold(I) Complexation of
p-Xylylene-1,4-Diphosphines. Z. Naturforsch. B: Chem. Sci. 2005,
60, 511-519. (e) Laughlin, F.; Deligonul, N.; Rheingold, A. L.; Golen,
J. A.; Laughlin, B. J.; Smith, R. C.; Protasiewicz, J. D. Fluorescent
Heteroacenes with Multiply-Bonded Phosphorus. Organometallics
2013, 32, 7116-7121. (f) Buster, B.; Diaz, A. A.; Graham, T.; Khan,
R.; Khan, M. A.; Powell, D. R.; Wehmschulte, R. J. m-
Terphenylphosphines: Synthesis, Structures and Coordination
Properties. Inorg. Chim. Acta. 2009, 362, 3465-3474. (g)
Ganushevich, Y. S.; Miluykov, V. A.; Polyancev, F. M.; Latypov, S. K.;
Lonnecke, P.; Hey-Hawkins, E.; Yakhvarov, D. G.; Sinyashin, O. G.
Nickel Phosphanido Hydride Complex: An Intermediate in the
Hydrophosphination of Unactivated Alkenes by Primary
Phosphine. Organometallics 2013, 32, 3914-3919. (h) Masuda, J.
D.; Hoskin, A. J.; Graham, T. W.; Beddie, C.; Fermin, M. C.; Etkin, N.;
Stephan, D. W. Catalytic P-H Activation by Ti and Zr Catalysts.
(Dimethylaminomethylidene) ‐ and (Diphenylmethylidene)
phosphines. Z. Anorg. Allg. Chem. 1981, 479, 41-56. (b)
Vanderdoes, T.; Bickelhaupt, F. Properties of Substituted
Triarylphosphaaalkenes. Phosphorus, Sulfur Silicon Relat. Elem.
1987, 30, 515-518. (c) Jouaiti, A.; Geoffroy, M.; Bernardinelli, G.
Synthesis of New Chelating Agents: Association of a Phosphaalkene
Moiety with a Pyridine. Tetrahedron Lett. 1992, 33, 5071-5074. (d)
Jouaiti, A.; Geoffroy, M.; Bernardinelli, G. 3,3 ′ ,5,5 ′ -
Tetra(phosphaalkene)biphenyl:
Synthesis
of
a
Novel
Bicyclometalating Bridging Ligand, and Structure of Its
Dipalladium Complex. Tetrahedron Lett. 1993, 34, 3413-3416. (e)
Jouaiti, A.; Geoffroy, M.; Bernardinelli, G. 1,2-Bis[2-(2,4,6-tri-tert-
butylphenyl)phosphanediylmethyl]benzene, L: Synthesis and
Structure of L, of the Chelated Complex [PdLCl2] and of a Derived
Cyclometallated Chiral Complex. Chem. Commun. 1996, 437-438.
(f) Kawanami, H.; Toyota, K.; Yoshifuji, M. Preparation and
Photoisomerization of 2-Phosphaethenylbenzenes Having More
than One Phosphorus-Carbon Double Bond. J. Organomet. Chem.
1997, 535, 1-5. (g) Ionkin, A. S.; Marshall, W. J. 2,4,6-Tri-tert-
butylphenyl and 2,4-Di-tert-butyl-6-methylphenyl Groups: Look
Similar, React Differently. Heteroat. Chem. 2002, 13, 662-666. (h)
Termaten, A.; van der Sluis, M.; Bickelhaupt, F. The Substituent
Effect of the Phosphaalkenyl Group. Eur. J. Org. Chem. 2003, 2003,
2049-2055. (i) Yam, M.; Chong, J. H.; Tsang, C. W.; Patrick, B. O.;
Lam, A. E.; Gates, D. P. Scope and Limitations of the Base-Catalyzed
Phospha-Peterson P=C Bond-Forming Reaction. Inorg. Chem.
2006, 45, 5225-5234.
ACS Paragon Plus Environment