P.-F. Teng et al. / Tetrahedron: Asymmetry 14 (2003) 837–844
843
4.6.2.
(1a)-5a-Methyl-3-oxabicyclo[3.1.0]hexan-2-one,
under nitrogen. The solution was stirred at ambient
temperature for 30 min. Ethyl diazoacetate (1 mmol) in
dichloromethane (1 ml) was added dropwise to the
reaction mixture. The mixture was allowed to stir for 12
h at room temperature. The ratios of the resulting
cyclopropanes were determined by GC analysis.
1b. Enantiomer separation was carried out on a 30 m
Chiraldex G-TA column operated at 110°C: 44.6 min
for the (1S,5R) enantiomer, 45.8 min for the (1R,5S)
enantiomer.
4.6.3. (1a)-5a-Phenyl-3-oxabicyclo[3.1.0]hexan-2-one, 1c.
Enantiomer separation on a 30 m Chiraldex G-TA
column operated at 125°C: 243.6 min and 251.7 min for
two enantiomers.
Acknowledgements
4.6.4. (1a,5a)-6a-Phenyl-3-oxabicyclo[3.1.0]hexan-2-one,
1d. The two diastereomers were separated by column
chromatography on silica gel using hexane/ Et2O (1:1).
Enantiomeric excess for each diastereomer was deter-
mined using a 30 m Chiraldex G-TA column operated
at 150°C: (i) for trans isomer: 88.3 min for the (1S,5R)
enantiomer, 96.6 min for the (1R,5S) enantiomer; for
cis isomer: 86.4 min and 92.1 min for the two
enantiomers.
This research was supported by the Research Grants
Council of Hong Kong (CERG Grant No. CityU 1095/
01P) and partially supported by the Area of Excellence
Scheme established under the University Grants Com-
mittee of the Hong Kong Special Administrative
Region, China (Project No. AoE/P-10/01).
References
4.6.5. (1a,5a)-6b-Methyl-3-oxabicyclo[3.1.0]hexan-2-one,
1e. Enantiomer separation was carried out on a 30 m
Chiraldex G-TA column operated at 120°C: 35.1 min
and 36.3 min for the two enantiomers.
1. (a) Doyle, M. P. Chem. Rev. 1986, 86, 919; (b) Doyle, M.
P. Acc. Chem. Res. 1986, 19, 348; (c) Mass, G. Top. Curr.
Chem. 1986, 137, 75; (d) Brookhart, M.; Studabaker, W.
B. Chem. Rev. 1987, 87, 411; (e) Singh, V. K.;
DattaGupta, A.; Sekar, G. Synthesis 1997, 137; (f) Doyle,
M. P. In Catalytic Asymmetric Synthesis; 2nd ed.; Ojima,
I., Ed.; VCH: New York, 2000; p. 191.
2. For copper systems, see: (a) Fritschi, H.; Leutenegger, U.;
Pfaltz, A. Helv. Chim. Acta 1998, 71, 1553; (b) Fritschi,
H.; Leutenegger, U.; Pfaltz, A. Angew. Chem., Int. Ed.
Engl. 1986, 25, 1005; (c) Evans, D. A.; Woerpel, K. A.;
Hinman, M. M.; Faul, M. F. J. Am. Chem. Soc. 1991,
113, 726; (d) Lowenthal, R. E.; Abiko, A.; Masamune, S.
Tetrahedron Lett. 1990, 31, 6005; (e) Ito, K.; Katsuki, T.
Tetrahedron Lett. 1993, 34, 2661; (f) Ito, K.; Katsuki, T.
Synlett 1993, 638; (g) Kwong, H.-L.; Lee, W.-S.; Ng,
H.-F.; Chiu, W.-H.; Wong, W.-T. J. Chem. Soc., Dalton
Trans. 1998, 1043; (h) Lo, M. M.-C.; Fu, G. J. Am.
Chem. Soc. 1998, 120, 10270.
3. For rhodium systems, see: (a) Davies, H. M. L.; Bruzin-
ski, P. R.; Lake, D. H.; Kong, N.; Fall, M. J. J. Am.
Chem. Soc. 1996, 118, 6897; (b) Doyle, M.; Zhou, Q.-L.;
Charnsangavej, C.; Longoria, M. A.; Mckervey, M. A.;
Garcia, C. F. Tetrahedon Lett. 1996, 37, 4129; (c) Davies,
H. M. L.; Bruzinski, P. R.; Fall, M. J. Tetrahedon Lett.
1996, 37, 4133; (d) Mu¨ller, P.; Baud, C.; Ene, D.;
Motallebi, S.; Doyle, M. P.; Brandes, B. D.; Dyatkin, A.
B.; See, M. M. Helv. Chim. Acta 1995, 78, 459.
4. (a) Collman, J. P.; Zhang, X.; Lee, V. J.; Uffelman, E. S.;
Brauman, J. I. Science 1993, 261, 1404; (b) Collman, J.
P.; Lee, V. J.; Kellen-Yuen, C. J.; Zhang, X.; Ibers, J. A.;
Brauman, J. I. J. Am. Chem. Soc. 1995, 117, 692; (c)
Konishi, K.; Oda, K.; Nishida, K.; Aida, T.; Inoue, S. J.
Am. Chem. Soc. 1992, 114, 1313; (d) Naruta, Y.; Tani, F.;
Ishihara, N.; Maruyama, K. J. Am. Chem. Soc. 1991,
113, 6865; (e) Gross, Z.; Ini, S. J. Org. Chem. 1997, 62,
5514; (f) Gross, Z.; Ini, S.; Kapon, M.; Cohen, S. Tetra-
hedron Lett. 1996, 37, 7325; (g) Berkessel, A.;
Frauenkron, M. J. Chem. Soc., Perkin Trans. 1 1997,
2265; (h) Zhang, R.; Yu, W.-Y.; Lai, T.-S.; Che, C.-M.
Chem. Commun. 1999, 409; (i) Che, C.-M.; Yu, W.-Y.
4.6.6. (1a,5a)-6b-Ethyl-3-oxabicyclo[3.1.0]hexan-2-one,
1f. Enantiomer separation was carried out on a 30 m
Chiraldex G-TA column operated at 140°C: 20.1 min
and 21.5 min for two enantiomers; 11 and 6% ee,
1
respectively; H NMR (300 MHz) l 4.41 (dd, 1H), 4.15
(d, 1H), 2.30–2.18 (comp, 2H), 1.48–1.38 (m, 2H),
1.12–1.05 (m, 3H).
4.6.7. (1a,5a)-6b-Phenyl-3-oxabicyclo[3.1.0]hexan-2-one,
1g. Enantiomer separation was carried out on a 30 m
Chiraldex G-TA column operated at 150°C: 91.15 min
for the (1S,5R) enantiomer and 99.7 min for the
(1R,5S) enantiomer.
4.6.8. (1a,5a)-6,6-Dimethyl-3-oxabicyclo[3.1.0]hexan-2-
one, 1h. Enantiomer separation was carried out on a 30
m Chiraldex G-TA column operated at 120°C: 16.6 min
for the (1S,5R) enantiomer, 21.4 min for the (1R,5S)
enantiomer.
4.6.9. (1a,5a)-6a-Methyl-6b-(4-methyl-3-penten-1-yl)-3-
oxabicyclo[3.1.0]hexan-2-one, 1i. Enantiomer separation
was carried out on a 30 m Chiraldex G-TA column
operated at 150°C: 62.4 min for the (1S,5R) enantiomer
and 67.9 min for the (1R,5S) enantiomer.
4.6.10. (1a,5a)-6b-Methyl-6a-(4-methyl-3-penten-1-yl)-3-
oxabicyclo[3.1.0]hexan-2-one, 1j. Enantiomer separation
was carried out on a 30 m Chiraldex G-TA column
operated at 150°C: 59.3 min for the (1S,5R) enantiomer
and 63.8 min for the (1R,5S) enantiomer.
4.7. General procedure for competition reactions
To a two-necked round-bottomed flask were added
[Rh(P*)I] (0.05 mol%), styrene (2.5 mmol) and substi-
tuted styrene (2.5 mmol) in dichloromethane (2 ml)