J. Am. Chem. Soc. 1996, 118, 2507-2508
2507
Scheme 1a
Hydrogen-Bonding as a Stereocontrolling Element
in Free-Radical C-Allylation Reactions: Vicinal,
Proximal, and Remote Asymmetric Induction in the
Amino Acid Series
Stephen Hanessian,* Hua Yang, and Robert Schaum
Department of Chemistry, UniVersite´ de Montre´al
P.O. Box 6128, Station Centre-Ville
Montre´al, Quebec, Canada H3C 3J7
ReceiVed NoVember 21, 1995
Stereocontrolled bond-forming reactions by free-radical pro-
cesses in acyclic molecules are currently among the more
challenging areas in asymmetric synthesis.1 Recent advances
in this area have generally focused on the utilization of
derivatives of carboxylic acids with appropriate chiral auxilia-
ries2 and on exploiting the presence of â-alkoxy substituents
and other resident groups.3 A model for the transition state in
such reactions involving 1,2-asymmetric induction has been
proposed by Hart and Krishnamurthy4 and further elaborated
upon by Curran and co-workers.5 The general consensus is that,
with few exceptions, the high diastereoselectivity is the result
of a combination of minimized allylic 1,3-strain and torsional
strain6 and of stereoelectronic effects.7,8 The notion that
intramolecular H-bonding might play a role in the C-deuteration9
and C-allylation2d of â-hydroxycarbalkoxy and amide R-radicals
has been alluded to and experimentally tested with unrewarding4
or inconclusive results.5
a Reaction conditions: (a) LDA, PhSeBr, THF, -78 °C; (b)
allyltributylstannane, AIBN, hν, toluene or dichloromethane, -40 °C
or -20 °C.
examples of remarkably high stereoselectivity in 1,2-induction2,3
and unprecedented 1,3-, 1,4-,12 and 1,5-asymmetric inductions
in the free-radical C-allylation of R-acyl radicals derived from
a series of N-substituted acyclic amino acid derivatives (Scheme
1),13 by exploiting intramolecular H-bonding as a stereocon-
trolling element.
Treatment of the readily available R-selenophenyl or R-iodo
esters or amides of â-N-substituted amino acid derivatives with
allytributylstannane14 led to a quasi exclusive formation of the
anti-C-allyl derivatives, regardless of the nature of the â-alkyl
(aryl) substituent tested so far (Scheme 1, series A; Table 1,
entries 1-3).15 Changing the â-substituent to a carbomethoxy
group resulted in a complete reversal of selectivity, giving the
syn-C-allylated product, while maintaining high stereoselectivity
(Scheme 1, series B; Table 1, entries 4 and 5).15
Continuing our studies10 on the reactivity and stereochemical
issues related to R-carbalkoxy radicals,11 we report herein
(1) For recent reviews on stereochemical control in free radical reactions
in acyclic systems, see: (a) Smadja, W. Synlett 1994, 1. (b) Porter, N. A.;
Giese. B. and Curran. D. P. Acc. Chem. Res. 1991, 24, 296. (c) Giese, B.
Angew. Chem. Int. Ed. Engl. 1989, 28, 969. For general reviews, see: (d)
Curran, D. P. Synthesis 1988, 417; 489. (e) Giese, B. Radicals in Organic
Synthesis. Formation of Carbon-Carbon Bonds; Pergamon Press: Oxford,
1986.
(2) For recent examples in acyclic substrates with chiral auxilaries, see:
(a) Nishida, M.; Ueyama, E.; Hayashi, H.; Ohyake, Y.; Yamura, Y.;
Yanaginuma, E.; Yonemitsu, O.; Nishida, A.; Kawahara, N. J. Am. Chem.
Soc. 1994, 116, 6455. (b) Yamamoto, Y.; Onuki, S.; Yumoto, M.; Asao,
N. J. Am. Chem. Soc. 1994, 116, 421. (c) Porter, N. A.; Rosenstein, I. J.;
Breyer, R. A.; Bruhnke, J. D.; Wu, W.-X.; McPhail, A. T. J. Am. Chem.
Soc. 1992, 114, 7664 and previous papers. (d) Hamon, D. P. G.; Massy-
Westropp, R. A.; Razzino, P. J. Chem. Soc., Chem. Commun. 1991, 332;
722. (e) Giese, B.; Zehnder, M.; Roth, M. and Zeitz H.-G.J. Am. Chem.
Soc. 1990, 112, 6741.
Using DMSO instead of toluene as solvent resulted in an
erosion or reversal of selectivity,15 thus demonstrating the role
of the polarity of the solvent4 on the prevailing conformers in
the transition state of these reactions and the dominant role that
intramolecular H-bonding may play in controlling conforma-
tional mobility.
In an effort to study the influence of intramolecular H-bonding
on the stereoselectivity of C-allylation, we extended the reaction
to a series of γ-, δ-, and ω-amino acid derivatives (Scheme 1,
series C, D). Unprecedented levels of proximal 1,3-induction
were obtained with the N-trifluoroacetyl and N,N-dimethyl or
N-methoxy-N-methyl amide derivatives (Table 1, entries 6-10).
The selectivity was somewhat lower in the case where R1 )
Me and Ph (Table 1, entries 9 and 10). However, extending
the distance between the electronically most favored hydrogen-
bonding partners (N-TFA and CONMe2) led to surprisingly good
1,4-anti- and 1,5-syn selectivity (Table 1, entries 11 and 12;
Scheme 1, series D, n ) 2, 3, respectively).
(3) For recent examples in acyclic substrates with a chiral resident group,
see: (a) Kundig, E. P.; Xu, L.-H.; Romanens P. Tetrahedron Lett. 1995,
36, 4047. (b) Murakata, M.; Tsutsui, H.; Hoshino, O. J. Chem. Soc., Chem.
Commun. 1995, 481. (c) Giese, B.; Buliard, M.; Dickhaut, J.; Halbach, R.;
Hassler, C.; Hoffmann, U.; Hinzen, B.; Senn, M. Synlett 1995, 116. d)
Guindon, Y.; Gue´rin, B.; Chabot, C.; Mackintosh, N. and Ogilvie, W. W.
Synlett 1995, 449 and previous papers. (e) Ogura, K.; Kayano, A.; Sumitani,
N.; Akazome, M.; Fujita, M. J. Org. Chem. 1995, 60, 1106. (f) Nagano,
H.; Kuno, Y. J. Chem. Soc., Chem. Commun. 1994, 987. (g) Morikawa,
T.; Washio, Y.; Shiro, M.; Taguchi, T. Chem. Lett. 1993, 249. (h) Curran,
D. P.; Abaraham, A. C.; Liu, H. J. Org. Chem. 1991, 56, 4335.
(4) Hart, D.; Krishnamurthy, R. J. Org. Chem. 1992, 57, 4457; Synlett
1991, 412.
(5) (a) Curran, D. P.; Abraham, A. Tetrahedron 1993, 49, 4821. (b)
Curran, D. P.; Ramamoorthy, P. S. Tetrahedron 1993, 49, 4841.
(6) (a) Giese, B.; Damm, W.; Wetterich, F.; Zeitz, H.-G.; Rancourt, J.;
Guindon, Y. Tetrahedron Lett. 1993, 5885. (b) Thoma, G.; Curran, D. P.;
Geib, S. V.; Giese, B.; Damm, W.; Wetterich, F. J. Am. Chem. Soc. 1993,
115, 8585.
(11) (a) Belletire, J. L.; Mahmoudi, N. O. Tetrahedron Lett. 1989, 30,
4363. (b) Surzur, J.-M.; Bertrand, M. P. Pure Appl. Chem. 1988, 60, 1659.
See also: Clough, J. M.; Pattenden, G.; Wight, P. G. Tetrahedron Lett.
1989, 30, 7469.
(12) For a different type of 1,4-induction originating from a chiral
auxiliary, see: Stacker, J. G.; Curran, D. P.; Rebek, J., Jr.; Ballester, P. J.
Am. Chem. Soc. 1991, 113, 5918. See also ref 2e.
(7) (a) Guindon, Y.; Slassi, A.; Rancourt, J.; Bantle, G.; Bencheqroun,
M.; Wurtagh, L.; Ghiro, E.; Jung, G. J. Org. Chem. 1995, 60, 288. (b)
Durkin, K.; Liotta, D.; Rancourt, J.; Lavalle´e, J.-F.; Boisvert, L.; Guindon,
Y. J. Am. Chem. Soc. 1992, 114, 4912.
(8) For theoretical and mechanistic insights, see: (a) Spellmeyer, D. C.;
Houk, K. N. J. Org. Chem. 1987, 52, 959. (b) Curran, D. P.; Sun, S.
Tetrahedron Lett. 1993, 34, 6181. (c) Giese, B.; Damm, W.; Martin, R.;
Zehnder, M. Synlett 1992, 441. See also ref 6a.
(13) For the application of radical chemistry to amino acid and related
derivatives, see: (a) Easton, C. J.; Hutton, C. A.; Rositano, G.; Tan, E. W.
J. Org. Chem. 1991, 56, 5614. (b) Barton, D. H. R.; Herve´, Y.; Potier, P.;
Thierry, J. Tetrahedron 1988, 44, 5479. See also: Crich, D.; Quintero, L.
Chem. ReV. 1989, 89, 1413. See also ref 2.
(14) Keck, G. E.; Yates, J. B. J. Am. Chem. Soc. 1982, 104, 5829.
(15) For details, see supporting information. Anti/syn designations refer
to the relative orientations of substituents in an extended zig-zag chain.
(9) Hamon, D. P. G.; Massy-Westropp, R. A.; Razzino, P. Tetrahedron
1993, 49, 6419. See also ref 2d.
(10) Hanessian, S.; Di Fabio, R.; Marcoux, J.-F.; Prud’homme, M. J.
Org. Chem. 1990, 55, 3436 and references therein.
0002-7863/96/1518-2507$12.00/0 © 1996 American Chemical Society