CHH–CH2–CH3), 2.16 (dd, 1H, J = 4.5, 13.2 Hz, CHH–CH2–
CH3), 2.54 (s, 3H, CH3CO), 4.29 (d, 1H, J = 4.2 Hz, CHN),
4.66 (dq, J = 4.2, 6.6 Hz, CHO), 5.17 (AB, J = 12.0 Hz,
OCH2Ph), 6.91 (s, 1H, NH), 7.31–7.42 (m, 5H, Ph); 13C NMR
(CDCl3, 100 MHz): d = 13.8, 17.2, 20.7, 22.6, 23.3, 38.9, 60.9,
63.0, 67.6, 73.4, 128.2, 128.5, 128.6, 135.1, 152.4, 166.2, 171.0,
173.7. Elemental analysis for C20H26N2O6 (390.4): calcd C 61.53,
H 6.71, N 7.18%; found C 61.54, H 6.75, N 7.15%.
Acknowledgements
C. T. thanks MURST Cofin 2002 (“Sintesi di peptidi ciclici o
lineari contenenti amminoacidi inusuali analoghi di arginina,
glicina o acido aspartico (RGD) come nuovi inbitori di inte-
grine”), FIRB 2001 (“Eterocicli azotati come potenziali inbitori
enzimatici”) and 60% (Ricerca Fondamentale Orientata), and
the University of Bologna (funds for selected topics “Processi di
sintesi innovativi ed eco-compatibili di molecole bioattive”) for
financial support. G. L. thanks Consorzio C.I.N.M.P.I.S. (Bari)
for a grant.
Ac–L-Oxd–L-aMeVal–OBn 3e. Waxy solid; [a]2D0 −12.2
(c 0.9, CH2Cl2); IR (CH2Cl2, 3 mM): m = 3430, 3390, 1786,
1737, 1701, 1638 cm−1; 1H NMR (CDCl3, 400 MHz): d = 0.88
(d, 3H, J = 6.8 Hz, Me–iPr), 0.94 (d, 3H, J = 6.8 Hz, Me–iPr),
1.38 (d, 3H, J = 6.4 Hz, Me–Oxd), 1.58 (s, 3H, C–aMe), 2.15–
2.29 (m, 1H, CH–iPr), 2.54 (s, 3H, CH3CO), 4.28 (d, 1H, J =
4.0 Hz, CHN), 4.68 (dq, J = 4.8, 6.4 Hz, CHO), 5.14 (AB, J =
References
1 (a) C. Kempter, D. Kaiser, S. Haag, G. Nicholson, V. Gnau, T. Walk,
K. H. Gierling, H. Decker, H. Zaehner, G. Jung and J. W. Metzger,
Angew. Chem., Int. Ed. Engl., 1997, 36, 498–501; (b) G. C. Uguru, C.
Milne, M. Borg, F. Flett, C. P. Smith and J. Micklefield, J. Am. Chem.
Soc., 2004, 126, 5032–5033; (c) L. Zhao, Y. Liu, K. S. Bruzik and
M.-D. J. Tsai, J. Am. Chem. Soc., 2003, 125, 22–23; (d) J. Micklefield,
Chem. Biol., 2004, 11, 887–888; (e) J. Hill, J. Siedlecki, I. Parr, M.
Morytko, X. Yu, Y. Zhang, J. Silverman, N. Controneo, V. Laganas,
T. Li, J.-J. Lai, D. Keith, G. Shimer and J. Finn, Bioorg. Med. Chem.
Lett., 2003, 13, 4187–4191.
12.0 Hz, OCH2Ph), 6.78 (s, 1H, NH), 7.31–7.42 (m, 5H, Ph); 13
C
NMR (CDCl3, 100 MHz): d = 17.2, 18.5, 20.5, 23.4, 35.0, 62.9,
63.7, 67.3, 73.1, 128.4, 128.5, 128.6, 135.2, 152.4, 166.4, 171.3,
172.7. Elemental analysis for C20H26N2O6 (390.4): calcd C 61.53,
H 6.71, N 7.18%; found C 61.50, H 6.77, N 7.10%.
Ac–D-Oxd–L-Ala–OBn 4. To a stirred solution of Ac–D-
Oxd–OH (1 mmol, 187 mg) and HBTU (1 mmol, 0.38 g) in
dry acetonitrile (10 mL) was added a mixture of H–L-Ala–
OBn·CF3CO2H (1 mmol, 0.29 mg) and Et3N (3 mmol, 0.44 mL)
in dry acetonitrile (10 mL) at rt. The solution was stirred 40 min,
then acetonitrile was removed under a reduced pressure and was
replaced with ethyl acetate. The mixture was washed with brine,
1 N aqueous HCl (3 × 30 mL) and with 5% aqueous NaHCO3
(1 × 30 mL), dried over Na2SO4 and concentrated in vacuo.
The product was obtained pure after silica gel chromatography
(cyclohexane–ethyl acetate, 7 : 3 as eluent) in 93% yield. Mp =
86–87 ◦C; [a]D20 −17.1 (c 0.9, CH2Cl2); IR (CH2Cl2, 3 mM): m =
3397, 3345, 1790, 1743, 1697 cm−1; 1H NMR (CDCl3, 300 MHz):
d = 1.43 (d, 3H, J = 7.2 Hz, Me–Ala), 1.49 (d, 3H, J = 6.3 Hz,
Me–Oxd), 2.54 (s, 3H, CH3CO), 4.41 (d, 1H, J = 3.9 Hz, CHN),
4.60 (dq, J = 6.9, 7.2 Hz, CHN–Ala), 4.85 (dq, J = 3.9, 6.3 Hz,
CHO), 5.17 (AB, J = 12.0 Hz, OCH2Ph), 6.92 (d, 1H, J = 6.9 Hz,
NH), 7.33–7.41 (m, 5H, Ph); 13C NMR (CDCl3, 100 MHz): d =
17.5, 20.2, 23.0, 48.2, 62.2, 66.9, 73.6, 127.7, 128.1, 128.3, 134.9,
152.5, 167.3, 170.5, 172.0. Elemental analysis for C17H20N2O6
(348.4): calcd C 58.61, H 5.79, N 8.04%; found C 58.60, H 5.75,
N 8.09%.
2 (a) Fluorescent Chemosensors for Ion and Molecule Recognition,
ed. A. W. Czarnik, ACS, Washington, 1992, pp. 1–226; (b) Coord.
Chem. Rev., 2000, 205, pp. 1–232, special issue on luminescent
sensors, guest ed. L. Fabbrizzi; (c) A. P. de Silva, G. D. McClean,
T. S. Moody and S. M. Weir, in Handbook of Photochemistry
and Photobiology, ed. H. S. Nalwa, American Institute of Physics,
Stevenson Ranch (Cal), USA, 2003, 3, pp. 217–270; (d) M. Zaccolo,
P. Magalha˜es and T. Pozzan, Curr. Opin. Cell Biol., 2002, 14, 160–166;
(e) K. M. Marks, M. Rosinov and G. P. Nolan, Chem. Biol., 2004, 11,
347–356.
3 (a) S. Lucarini and C. Tomasini, J. Org. Chem., 2001, 66, 727–732;
(b) F. Bernardi, M. Garavelli, M. Scatizzi, C. Tomasini, V. Trigari,
M. Crisma, F. Formaggio, C. Peggion and C. Toniolo, Chem. Eur. J.,
2002, 8, 2516–2515; (c) C. Tomasini, V. Trigari, S. Lucarini, F.
Bernardi, M. Garavelli, C. Peggion, F. Formaggio and C. Toniolo,
Eur. J. Org. Chem., 2003, 259–267; (d) G. Luppi, R. Galeazzi, M.
Garavelli, F. Formaggio and C. Tomasini, Org. Biomol. Chem., 2004,
2, 2181–2187.
4 G. Luppi, D. Lanci, V. Trigari, M. Garavelli, A. Garelli and C.
Tomasini, J. Org. Chem., 2003, 68, 1982–1993.
5 (a) J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong and C. M.
Whitehouse, Mass Spectrom. Rev., 1990, 9, 37–70; (b) C. M.
Whitehouse, R. N. Dreyer, M. Yamashuta and J. B. Fenn, Anal.
Chem., 1985, 57, 675–679.
6 G. Luppi, C. Soffre` and C. Tomasini, Tetrahedron: Asymmetry, 2004,
15, 1645–1650.
Ac–D-Oxac–L-Val–OBn 5. To a stirred solution of Ac–D-
Oxac–OH16 (1 mmol, 187 mg) and HBTU (1 mmol, 0.38 g)
in dry acetonitrile (10 mL) was added a mixture of H–L-Val–
OBn.CF3CO2H (1 mmol, 0.32 mg) and Et3N (3 mmol, 0.44 mL)
in dry acetonitrile (10 mL) at rt. The solution was stirred 40 min,
then acetonitrile was removed under a reduced pressure and was
replaced with ethyl acetate. The mixture was washed with brine,
1 N aqueous HCl (3 × 30 mL) and with 5% aqueous NaHCO3
(1 × 30 mL), dried over Na2SO4 and concentrated in vacuo.
The product was obtained pure after silica gel chromatography
(cyclohexane–ethyl acetate 7 : 3 as eluent) in 95% yield. Mp =
126–128 ◦C; [a]D20 +72.6 (c 1.0, CH2Cl2); IR (CH2Cl2, 3 mM): m =
3419, 1776, 1731, 1698, 1678 cm−1; 1H NMR (CDCl3, 400 MHz):
d = 0.84 (d, 3H, J = 6.8 Hz, Me–iPr), 0.89 (d, 3H, J = 6.8 Hz,
Me–iPr), 2.05–2.15 (m, 1H, CH–iPr), 2.51 (s, 3H, CH3CO), 2.55
(dd, 1H, J = 9.6, 14.8 Hz, CHHCO), 3.05 (dd, 1H, J = 3.2,
15.2 Hz, CHHCO), 4.30 (dd, 1H, J = 3.6, 9.2 Hz, CHHO),
4.46 (t, 1H, J = 8.8 Hz, CHHO), 4.53 (dd, 1H, J = 4.8, 8.8 Hz,
CHN), 4.65–4.78 (m, 1H, CHO), 5.16 (AB, 2 H, J = 12.0 Hz,
OCH2Ph), 6.33 (d, 1H, J = 8.4 Hz, NH), 7.30–7.35 (m, 5H, Ph);
13C NMR (CDCl3, 100 MHz): d = 17.9, 19.2, 24.0, 31.3, 37.8,
51.6, 57.4, 67.4, 67.9, 128.6, 128.7, 128.8, 135.4, 153.9, 169.2,
171.0, 171.9. Elemental analysis for C19H24N2O6 (376.4): calcd
C 60.63, H 6.43, N 7.44%; found C 60.67, H 6.40, N 7.42%.
7 For an interpretation of N–H stretches in CH2Cl2, see: (a) R. R.
Gardner, G.-B. Liang and S. H. Gellman, J. Am. Chem. Soc., 1995,
117, 3280–3281; (b) C. P. Rao, R. Nagaraj, C. N. R. Rao and
P. Balaram, Biochemistry, 1980, 19, 425–431; (c) J. Yang, L. A.
Christianson and S. H. Gellman, Org. Lett., 1999, 1, 11–13.
8 (a) K. D. Kopple, M. Ohnishi and A. Go, Biochemistry, 1969, 8,
4087–4095; (b) D. Martin and G. Hauthal, in Dimethyl Sulfoxide,
Van Nostrand, London, UK, 1975, pp. 1–502.
9 F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, John
Wiley & Sons, New York, 1988.
10 K. I. Varughese, S. Aimoto and G. Kartha, Int. J. Pept. Protein Res.,
1986, 27, 118–122.
11 L.-J. Ball, C. M. Goult, J. A. Donarski, J. Micklefield and V. Ramesh,
Org. Biomol. Chem., 2004, 2, 1872–1878.
12 L. Prodi, New J. Chem., 2005, 29, 20–31.
13 (a) W. H. Kruizinga, J. Bolster, R. M. Kellogg, J. Kamphuis, W. H. J.
Boesten, E. M. Meijer and H. E. Schoemaker, J. Org. Chem., 1988, 53,
1826–1827; (b) B. Kaptein, W. H. J. Boesten, Q. B. Broxterman, P. J. H.
Peters, H. E. Schoemaker and J. Kamphuis, Tetrahedron: Asymmetry,
1993, 4, 1113–1116; (c) A. Moretto, C. Peggion, F. Formaggio, M.
Crisma, C. Toniolo, C. Piazza, B. Kaptein, Q. B. Broxterman, I. Ruiz,
M. D. Diaz-de-Villegas, J. A. Galvez and C. Cativiela, J. Pept. Res.,
2000, 56, 283–297.
14 A. Credi and L. Prodi, Spectrochim. Acta, Part A, 1998, 54, 159–
170.
15 For the preparation of H–L-Oxd–OBn 1, see ref. 6.
16 For the preparation of Ac–D-Oxac–OH, see ref. 3d.
1 5 2 4
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 1 5 2 0 – 1 5 2 4