ferent functionalities.4 With such a configuration, the tetra-
hedral C-9 carbon of fluorene serves as an insulating spacer,5
effectively hindering interactions between the central fluorene
chromophore and the C-9 substitution. In addition, materials
covalently combining different functional subunits also avoid
the problems of phase separation occasionally encountered
in using the doping or blending strategy.
Scheme 1
Among the oligofluorenes, ter(9,9-ditolylfluorene) (1) is
one of the most efficient emitters for blue OLEDs.6 Yet for
OLED applications, the electron affinity (Ea) of 1 is relatively
small, causing difficulty in electron injection from common
cathode electrodes and imposing the requirement of an
additional electron-transport layer with a more suitable
electron-injection capability. In this communication, 4,5-
diazafluorene7 has been facilely introduced as a functional
substituent spirally linked to the conjugated terfluorene main
chain. The resulting functionalized terfluorene (2) performs
a more balanced electron injection capability as compared
to the parent compound (1). The molecular design reported
in this communication possesses the advantage of permitting
the introduction of a higher electron affinity moiety without
altering the emission properties of the oligomeric fluorene
backbone.
The synthesis of the titled compound is depicted in Scheme
1. Starting from 4,5-diazafluoren-9-one,8 4,5-diaza-9,9′-
spirobifluorene9 was synthesized in moderate yield (70%)
with modified procedures (Supporting Information). The
selective bromination on the biphenyl branch of 4,5-diaza-
9,9′-spirobifluorene has been accomplished to afford 4,5-
diaza-2′,7′-dibromo-9,9′-spirobifluorene with a 66% isolated
yield in the presence of FeCl3 as a Lewis acid promoter in
CH2Cl2. The titled compound then was efficiently synthesized
with an isolated yield of 86% by Suzuki coupling reaction
of 4,5-diaza-2′,7′-dibromo-9,9′-spirobifluorene with the cor-
responding 9,9-ditolylfluorene pinacol boronic ester in the
presence of a catalytic amount of Pd(PPh3)4 and cocatalyst
PtBu3.
Cyclic voltammetry was conducted for probing electro-
chemical properties (Figure 1). To clearly differentiate
(3) (a) Kulkarni, A. P.; Zhu, Y.; Jenekhe, S. A. Macromolecules 2005,
38, 1553. (b) Kulkarni, A. P.; Kong, X.; Jenekhe, S. A. J. Phys. Chem. B
2004, 108, 8689. (c) Kong, X.; Kulkarni, A. P.; Jenekhe, S. A. Polym. Prepr.
2003, 44, 356. (d) Asawapirom, U.; Guntner, R.; Forster, M.; Farrell, T.;
Scherf, U. Synthesis 2002, 9, 1136. (e) Belfield, K. D.; Morales, A. R.;
Kang, B.-S.; Hales, J. M.; Hagan, D. J.; Van Stryland, E. W.; Chapela, V.
M.; Percino, J. Chem. Mater. 2004, 16, 4634. (f) Yang, R.; Tian, R.; Yan,
J.; Zhang, Y.; Yang, J.; Hou, Q.; Yang, W.; Zhang, C.; Cao, Y.
Macromolecules 2005, 38, 244. (g) Liu, B.; Yu, W.-L.; Pei, J.; Liu, S.-Y.;
Lai, Y.-H.; Huang, W. Macromolecules 2001, 34, 7932.
(4) (a) Ego, C.; Grimsdale, A. C.; Uckert, F.; Yu, G.; Srdanov, G.;
Mu¨llen, K. AdV. Mater. 2002, 11, 809. (b) Wu, F.-I.; Reddy, D. S.; Shu,
C.-F.; Liu, M. S.; Jen, A. K.-Y. Chem. Mater. 2003, 15, 269. (c) Shu, C.-
F.; Dodda, R.; Wu, F.-I.; Liu, M. S.; Jen, A. K.-Y. Macromolecules 2003,
36, 6698. (d) Kim, J. H.; Liu, M. S.; Jen, A. J. K.-Y.; Carlson, B.; Dalton,
L. R.; Shu, C.-F.; Dodda, R. Appl. Phys. Lett. 2003, 83, 776. (e) Kim, J.
H.; Herguth, P.; Kang, M.-S.; Jen, A. J. K.-Y.; Tseng, Y.-H.; Shu, C.-F.
Appl. Phys. Lett. 2004, 85, 1116. (f) Niu, Y.-H.; Chen, B.; Liu, S.; Yip, H.;
Bardecker, J.; Jen, A. K.-Y.; Kavitha, J.; Chi, Y.; Shu, C.-F.; Tseng, Y.-
H.; Chien, C.-H. Appl. Phys. Lett. 2004, 85, 1619. (g) Chen, X.; Liao, J.-
L.; Liang, Y.; Ahmed, M. O.; Tseng, H. E.; Chen, S.-A. J. Am. Chem. Soc.
2003, 125, 636.
Figure 1. Comparison of reduction cyclic voltammograms of 1
(blue) and 2 (red). The inset shows differential pluse voltammetry.
For CV experiments, which were performed in THF with 0.1 M of
nBu4ClO4 as a supporting electrolyte, a glass electrode was used
as the working electrode; scan rate ) 100 mV/s.
(5) (a) Wu, F.-I.; Shu, C.-F.; Chien, C.-H.; Tao, Y.-T. Synth. Met. 2005,
148, 133. (b) Nomura, M.; Shibasaki, Y.; Ueda, M.; Tugita, K.; Ichikawa,
M.; Taniguchi, Y. Synth. Met. 2005, 148, 155.
(6) Wu, C.-C.; Lin, Y.-T.; Wong, K.-T.; Chen, R.-T.; Chien, Y.-Y. AdV.
Mater. 2004, 16, 61.
(7) Ono, K.; Yanase, T.; Ohkita, M.; Saito, K.; Matsushita, Y.; Naka,
S.; Okada, H.; Onnagawa, H. Chem. Lett. 2004, 33, 276.
(8) (a) Mazaleyrat, J.-P.; Wright, K.; Wakselman, M.; Formaggio, F.;
Crisma, M.; Toniolo, C. Eur. J. Org. Chem. 2001, 10, 1821. (b) Baxter, P.
N. W.; Connor, J. A.; Wallis, J. D.; Povey, D. C.; Powell, A. K. J. Chem.
Soc., Perkin Trans. 1 1992, 13, 1601.
electrochemical behaviors of different compounds, dif-
ferential pulse voltammetry (DPV) of terfluorenes 1 and 2
were also conducted under the same conditions (inset of
Figure 1). Terfluorene 2 exhibits a reduction onset at -1.76
V, whereas the parent terfluorene 1 has a higher reduction
onset at -1.87 V.
Three reduction potentials were detected for 2. The origin
of these reduction peaks was determined by comparing the
reduction potentials of 4,5-diaza-9,9′-spirobifluorene (with
(9) Piotrowiak, P.; Kobetic, R.; Schatz, T. R.; Tapper, S. Bull. Pol. Acad.
Sci. Chem. 1994, 42, 445.
1980
Org. Lett., Vol. 7, No. 10, 2005