Communication
ChemComm
10 (a) G. Guazzelli, S. De Grazia, K. D. Collins, H. Matsubara, M. Spain
and D. J. Procter, J. Am. Chem. Soc., 2009, 131, 7214; (b) K. D. Collins,
J. M. Oliveira, G. Guazzelli, B. Sautier, S. De Grazia, H. Matsubara,
M. Helliwell and D. J. Procter, Chem. – Eur. J., 2010, 16, 10240;
(c) B. Sautier, S. E. Lyons, M. R. Webb and D. J. Procter, Org. Lett.,
2012, 14, 146; (d) M. Szostak, M. Spain and D. J. Procter, Nat. Protoc.,
2012, 7, 970; Detailed study on the preparation of SmI2:
(e) M. Szostak, M. Spain and D. J. Procter, J. Org. Chem., 2012,
77, 3049; ( f ) M. Szostak, B. Sautier, M. Spain, M. Behlendorf and
D. J. Procter, Angew. Chem., Int. Ed., 2013, 52, 12559.
using the SmI2–H2O system. We hope that further research
aimed at understanding processes involving activation of SmI2
by Lewis basic ligands will enable discovery of new radical
reactions.
We are grateful to the EPRSC and GSK for financial support.
Notes and references
1 Reviews on metal-mediated radical reactions: (a) B. M. Trost and 11 (a) L. A. Duffy, H. Matsubara and D. J. Procter, J. Am. Chem. Soc.,
I. Fleming, Comprehensive Organic Synthesis, Pergamon Press, 1991;
2008, 130, 1136; (b) D. Parmar, L. A. Duffy, D. V. Sadasivam,
H. Matsubara, P. A. Bradley, R. A. Flowers, II and D. J. Procter,
J. Am. Chem. Soc., 2009, 131, 15467; (c) D. Parmar, K. Price, M. Spain,
H. Matsubara, P. A. Bradley and D. J. Procter, J. Am. Chem. Soc., 2011,
133, 2418; (d) D. Parmar, H. Matsubara, K. Price, M. Spain and
D. J. Procter, J. Am. Chem. Soc., 2012, 134, 12751; (e) M. Szostak,
M. Spain, K. A. Choquette, R. A. Flowers, II and D. J. Procter, J. Am.
Chem. Soc., 2013, 135, 15702; Application to TmI2–H2O:
( f ) M. Szostak, M. Spain and D. J. Procter, Angew. Chem., Int. Ed.,
2013, 52, 7237. Application to Birch reductions: (g) M. Szostak,
M. Spain and D. J. Procter, J. Org. Chem., 2014, 79, 2522.
¨
(b) A. Gansauer and H. Bluhm, Chem. Rev., 2000, 100, 2771;
(c) M. Szostak and D. J. Procter, Angew. Chem., Int. Ed., 2012,
51, 9238; (d) J. Streuff, Synthesis, 2013, 45, 281.
2 For reviews see: (a) P. Renaud and M. Sibi, Radicals in Organic
Synthesis, Wiley-VCH, 2001; (b) C. Chatgilialoglu and A. Studer,
Encyclopedia of Radicals in Chemistry, Biology and Materials, Wiley-
Blackwell, 2012; (c) T. Wirth, Angew. Chem., Int. Ed. Engl., 1996,
35, 61; (d) J. Murphy, J. Org. Chem., 2014, 79, 3731.
3 For a comprehensive review, see: (a) C. Chatgilialoglu, D. Crich,
M. Komatsu and I. Ryu, Chem. Rev., 1999, 99, 1991; For an elegant
solution using SmI2, see: (b) C. M. Jensen, K. B. Lindsay, 12 Representative examples: (a) B. Hu, M. Prashad, D. Har, K. Prasad,
ˇ
R. H. Taaning, J. Karaffa, A. M. Hansen and T. Skrydstrup, J. Am.
Chem. Soc., 2005, 127, 6544.
4 D. J. Procter, R. A. Flowers, II and T. Skrydstrup, Organic Synthesis using
Samarium Diiodide: A Practical Guide, RSC Publishing, Cambridge, 2009.
5 Recent reviews on SmI2: (a) H. B. Kagan, Tetrahedron, 2003,
O. Repic and T. J. Blacklock, Org. Process Res. Dev., 2007, 11, 90;
(b) H. S. Lee and D. H. Kim, Bioorg. Med. Chem., 2003, 11, 4685;
(c) P. M. Chaudhari, P. V. Kawade and S. M. Funne, Int. J. Pharm.
Technol., 2011, 3, 774; (d) D. Zhang, M. A. Hillmyer and
W. B. Tolman, Macromolecules, 2004, 37, 8198.
59, 10351; (b) D. J. Edmonds, D. Johnston and D. J. Procter, Chem. 13 Comprehensive reviews on Meldrum’s acids: (a) H. McNab, Chem.
Rev., 2004, 104, 3371; (c) K. C. Nicolaou, S. P. Ellery and J. S. Chen,
Angew. Chem., Int. Ed., 2009, 48, 7140; (d) C. Beemelmanns and
H. U. Reissig, Chem. Soc. Rev., 2011, 40, 2199; (e) M. Szostak and 14 M. O. Polla, L. Tottie, C. Norden, M. Linschoten, D. Mu¨sila,
Soc. Rev., 1978, 7, 345; (b) B. C. Chen, Heterocycles, 1991, 32, 529;
(c) A. M. Dumas and E. Fillion, Acc. Chem. Res., 2010, 43, 440.
´
D. J. Procter, Angew. Chem., Int. Ed., 2011, 50, 7737; ( f ) M. Szostak,
M. Spain and D. J. Procter, Chem. Soc. Rev., 2013, 42, 9155;
(g) M. Szostak, N. J. Fazakerley, D. Parmar and D. J. Procter, Chem.
Rev., 2014, 114, DOI: 10.1021/cr400685r.
S. Trumpp-Kallmeyer, I. R. Aukrust, R. Ringom, K. H. Holm,
S. M. Neset, M. Sandberg, J. Thurmond, P. Yu, G. Hategan and
H. Anderson, Bioorg. Med. Chem., 2004, 12, 1151.
15 Relevant studies on mechanisms of SmI2-mediated reactions:
(a) M. Szostak, M. Spain and D. J. Procter, Chem. – Eur. J., 2014,
20, 4222; (b) M. Szostak, M. Spain and D. J. Procter, J. Am. Chem.
Soc., 2014, 136, DOI: 10.1021/ja503494b; (c) T. Ankner and
G. Hilmersson, Tetrahedron, 2009, 65, 10856; (d) P. R. Chopade,
E. Prasad and R. A. Flowers, II, J. Am. Chem. Soc., 2004, 126, 44;
(e) E. Prasad and R. A. Flowers, II, J. Am. Chem. Soc., 2005,
127, 18093; ( f ) D. V. Sadasivam, J. A. Teprovich, Jr., D. J. Procter
and R. A. Flowers, II, Org. Lett., 2010, 12, 4140.
6 For reviews on the influence of additives on properties of SmI2, see:
´
(a) A. Dahlen and G. Hilmersson, Eur. J. Inorg. Chem., 2004, 3393;
(b) M. Szostak, M. Spain, D. Parmar and D. J. Procter, Chem.
Commun., 2012, 48, 330.
7 For early studies, see: (a) Y. Kamochi and T. Kudo, Chem. Lett., 1993,
1495; (b) Y. Kamochi and T. Kudo, Tetrahedron, 1992, 48, 4301;
Recent examples: (c) M. Szostak, M. Spain and D. J. Procter, Chem.
Commun., 2011, 47, 10254; (d) M. Szostak, M. Spain and D. J. Procter,
Org. Lett., 2012, 14, 840; (e) M. Szostak, K. D. Collins, 16 (a) A. Yacovan, I. Bilkis and S. Hoz, J. Am. Chem. Soc., 1996, 118, 261;
N. J. Fazakerley, M. Spain and D. J. Procter, Org. Biomol. Chem.,
2012, 10, 5820; ( f ) M. Szostak, M. Spain, A. J. Eberhart and
D. J. Procter, J. Am. Chem. Soc., 2014, 136, 2268; (g) M. Szostak,
B. Sautier, M. Spain and D. J. Procter, Org. Lett., 2014, 16, 1092.
8 Representative examples of Sm(II)-Lewis base systems in other
(b) A. Tarnopolsky and S. Hoz, J. Am. Chem. Soc., 2007, 129, 3402;
(c) M. Amiel-Levy and S. Hoz, J. Am. Chem. Soc., 2009, 131, 8280;
(d) S. K. Upadhyay and S. Hoz, J. Org. Chem., 2011, 76, 1355.
17 R. H. Taaning, K. B. Lindsay, B. Schiøtt, K. Daasbjerg and
T. Skrydstrup, J. Am. Chem. Soc., 2009, 131, 10253.
´
´
transformations: (a) A. Dahlen and G. Hilmersson, Tetrahedron Lett., 18 Relative reactivity of Meldrum’s acids with SmI2–H2O: Meldrum’s
2002, 43, 7197; (b) A. Dahlen and G. Hilmersson, J. Am. Chem. Soc.,
acids c barbituric acids c lactones. See, ref. 10f.
2005, 127, 8340; (c) C. Beemelmanns and H. U. Reissig, Angew. 19 The onset of reactivity and maximum rate of the reduction of
Chem., Int. Ed., 2010, 49, 8021; (d) Z. Li, M. Nakashige and
W. J. Chain, J. Am. Chem. Soc., 2011, 133, 6553.
9 Representative examples of SmI2–H2O systems: (a) E. Hasegawa and
D. P. Curran, J. Org. Chem., 1993, 58, 5008; (b) G. Masson,
Meldrum’s acids is shifted towards higher concentrations of water
than the reduction of lactones using SmI2–H2O, despite the rate of
lactone reduction being slower than the rate of Meldrum’s acid
reduction.18 See, also: H. Farran and S. Hoz, Org. Lett., 2008, 10, 4875.
´
P. Cividino, S. Py and Y. Vallee, Angew. Chem., Int. Ed., 2003, 20 M. Newcomb, Tetrahedron, 1993, 49, 1151.
42, 2265; (c) P. Gilles and S. Py, Org. Lett., 2012, 14, 1042. 21 E. M. Simmons and J. F. Hartwig, Angew. Chem., Int. Ed., 2012, 51, 3066.
8394 | Chem. Commun., 2014, 50, 8391--8394
This journal is ©The Royal Society of Chemistry 2014