Paper
RSC Advances
NMR (250 MHz, CDCl3): d: 1.60 (s, 2H), 1.84 (s, 4H), 2.68 (c, 2H)
3.26 (c, 2H), 7.22–7.96 (c, 8H). 13C NMR (62.9 MHz,
CASDEADCl3) d 26.9, 28.4, 30.7, 31.8, 40.1, 125.1, 127.7, 127.9,
128.6, 129.0, 129.3, 130.3, 131.3, 134.8, 136.9, 144.2, 144.7,
165.1, MS (m/z, %): 308((M + 2), 33), 306(M ꢂ 1, 100), 292(9),
280(15), 277(12), 252(13), 242(17), 228(18), 215(18), 201(10),
188(10), 127(23), 120(25), 107(15).
Y. N. Liu and Z. H. Zhang, Appl. Catal., A, 2013, 457, 34; (c)
Y. H. Liu, J. Deng, J. W. Gao and Z. H. Zhang, Adv. Synth.
Catal., 2012, 354, 441; (d) R. B. N. Baig and R. S. Varma,
Green Chem., 2013, 15, 398; (e) J. Deng, L. P. Mo,
F. Y. Zhao, L. L. Hou, L. Yang and Z. H. Zhang, Green
Chem., 2011, 13, 2576; (f) D. H. Turkenburg, A. A. Antipov,
M. B. Thathagar, G. Rothenberg, G. B. Sukhorukov and
E. Eiser, Phys. Chem. Chem. Phys., 2005, 7, 2237; (g)
M. Nina Wichner, J. Beckers, G. Rothenberg and H. Koller,
J. Mater. Chem., 2010, 20, 3840.
Conclusion
´
´
In conclusion, the present work provided a new type of 12 (a) C. O. Dalaigh, S. A. Corr, Y. Gun'ko and S. J. Connon,
heterogeneous for potential synthetic application. Fe3O4@-
SiO2@PDETSA MNPs are an efficient and reusable catalyst for
the synthesis of quinoline derivatives and is comparable with
some other applied catalysts. Products have been achieved by a
Angew. Chem., Int. Ed., 2007, 46, 4329; (b) Y. Zhang and
C. G. Xia, Appl. Catal., A, 2009, 366, 141; (c) X. X. Zheng,
S. Z. Luo, L. Zhang and J. P. Cheng, Green Chem., 2009, 11,
455.
one-pot coupling reaction of carbonyl compounds and o-ami- 13 J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu, H. Kim, S. M. Lee,
nobenzophenone at 110 ꢀC in a short period of time under
solvent-free condition. In addition, it is easy to separate and
recover the catalyst for another catalytic recycling.
Y. M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. Hwang,
J. G. Park, J. Kim and T. Hyeon, Small, 2008, 4, 143.
14 M. P. Maguire, K. R. Sheets, K. McVety, A. P. Spada and
A. J. Zilberstein, Med. Chem., 1994, 37, 2129.
15 R. D. Larsen, E. G. Corley, A. O. King, J. D. Carrol, P. Davis,
T. R. Verhoeven, P. J. Reider, M. Labelle, J. Y. Gauthier,
Y. B. Xiang and R. J. Zamboni, J. Org. Chem., 1996, 61, 3398.
16 Y. L. Chen, K. C. Fang, J. Y. Sheu, S. L. Hsu and C. C. Tzeng, J.
Med. Chem., 2001, 44, 2374.
Acknowledgements
We gratefully acknowledge the support of this work by the Bir-
jand University Research Council.
17 G. Roma, M. D. Braccio, G. Grossi, F. Mattioli and M. Ghia,
Eur. J. Med. Chem., 2000, 35, 1021.
References
1 R. Yolanda de Miguel, J. Chem. Soc., Perkin Trans. 1, 2000, 1, 18 B. Kalluraya and S. F. Sreenivasa, Farmaco, 1998, 53, 399.
4213.
19 D. Doube, M. Blouin, C. Brideau, C. Chan, S. Desmarais,
D. Eithier, J. P. Fagueyret, R. W. Friesen, M. Girard,
Y. Girard, J. Guay, P. Tagari and R. N. Young, Bioorg. Med.
Chem. Lett., 1998, 8, 1255.
20 T. C. Ko, M. J. Hour, J. C. Lien, C. M. Teng, K. H. Lee,
S. C. Kuo and L. Huang, Bioorg. Med. Chem. Lett., 2001, 11,
279.
2 R. A. Sheldon and H. van Bekkum, Fine Chemicals through
Heterogeneous Catalysis, Wiley-VCH, Weinheim, 2001.
3 J. H. Clark, D. J. Macquarrie, Green Chemistry and Technology,
Blackwell, Abingdon, 2002.
4 J. Ying, R. M. Lee, P. S. Williams, J. C. Jeffrey, S. F. Sherif,
B. Brian and Z. Maciej, Biotechnol. Bioeng., 2007, 96, 1139.
5 J. Lee, Y. Jun, S. Yeon and J. Shin, Angew. Chem., Int. Ed., 21 Z. H. Skraup, Monatsh. Chem., 1880, 1, 316.
2006, 45, 8160.
22 N. D. Heindel, T. A. Brodof and J. E. Kogelschatz, J.
6 N. Tobias, S. Bernhard, H. Heinrich, H. Margarete and
V. R. Brigitte, J. Magn. Magn. Mater., 2005, 293, 483.
7 H. Gu, K. Xu, C. Xu and B. Xu, Chem. Commun., 2006, 941.
Heterocycl. Chem., 1966, 3, 222.
23 I. Hermecz, G. Kereszturi and L. Vasvari-Debreczy, Adv.
Heterocycl. Chem., 1992, 54, 1.
8 I. Akira, T. Kouji, K. Kazuyoshi, S. Masashige, H. Hiroyuki, 24 W. Ptzinger, J. Prakt. Chem., 1886, 33, 100.
M. Kazuhiko, S. Toshiaki and K. Takeshi, Cancer Sci., 2003, 25 P. K. Calaway and H. R. Henze, J. Am. Chem. Soc., 1939, 61,
94, 308.
1355.
¨
9 (a) V. Polshettiwar, R. Luque, A. Fihri, H. Zhu and 26 P. Friedlander, Chem. Ber., 1882, 15, 2572.
M. Bouhrara, Chem. Rev., 2011, 111, 3036; (b) S. Shylesh, 27 E. A. Fehnel, J. Org. Chem., 1966, 31, 2899.
V. Schunemann and W. R. Thiel, Angew. Chem., Int. Ed., 28 R. Long and K. Schoeld, J. Chem. Soc., 1953, 3161.
2010, 49, 3428; (c) V. Roberto Calderone, N. Raveendran 29 E. Roberts and E. E. Turner, J. Chem. Soc., 1927, 1832.
´
Shiju and D. Curulla-Ferre, Angew. Chem., Int. Ed., 2013, 52, 30 J. S. Yadav, P. Rao, D. Sreenu, R. S. Rao, V. N. Kumar,
4397.
K. Nagaiah and A. R. Prasad, Tetrahedron Lett., 2005, 46,
10 (a) R. Abu-Reziq, H. Alper, D. S. Wang and M. L. Post, J. Am.
7249.
Chem. Soc., 2006, 128, 5279; (b) G. Chouhan, D. S. Wang and 31 V. V. Kouznetsov, L. Y. Mendez and C. M. M. Gomez, Curr.
H. Alper, Chem. Commun., 2007, 4809; (c) T. Hara, T. Kaneta,
Org. Chem., 2005, 9, 141.
K. Mori, T. Mitsudome, T. Mizugaki, K. Ebitani and 32 S. J. Song, S. J. Cho, D. K. Park, T. W. Kwan and S. A. Jenekhe,
K. Kaneda, Green Chem., 2007, 9, 1246; (d) M. J. Jin and
D. H. Lee, Angew. Chem., Int. Ed., 2010, 49, 1119.
11 (a) E. Raee and S. Eavani, Green Chem., 2011, 13, 2116; (b)
Tetrahedron Lett., 2003, 44, 255.
33 S. A. Palimkar, S. A. Siddiqui, T. Daniel, R. J. Lahoti and
K. V. Srinivasan, J. Org. Chem., 2003, 68, 9371.
F. P. Ma, P. H. Li, B. L. Li, L. P. Mo, N. Liu, H. J. Kang, 34 S. K. De and R. A. Gibbs, Tetrahedron Lett., 2005, 46, 1647.
This journal is © The Royal Society of Chemistry 2014
RSC Adv., 2014, 4, 41753–41762 | 41761