2
J. Am. Chem. Soc., Vol. 118, No. 1, 1996
Pellicciari et al.
oxidative decarboxylation,17 electrooxidation,18 mass spectrom-
in solvolysis reactions, electron-donating neighboring groups
such as phenyl, vinyl, allyl, or cyclopropyl are necessary.
etry,19 and â-decay of a covalently-bonded tritium atom.20
A
necessary requirement for the direct solvolytic generation of
vinyl cations is either the use of leaving groups of high
nucleofugality, such as the trifluoromethanesulfonate (triflate)
anion21,22 or nonafluorobutanesulfonate (nonaflate) anion,22,23
or the presence of stabilizing neighboring groups in the
molecule.2f,2g If halide or tosylate leaving groups are employed
The solvolysis of cyclic vinyl substrates is of special interest
because it can lead to a cyclic vinyl cation intermediate. The
amount of strain inherent in the cyclic vinyl cation is a function
of the ring size. Early studies in this area demonstrated the
difficulty of forming vinyl cations with relatively small rings.24
This difficulty was ascribed to the high energy of the transition
state leading to the bent vinyl cation since larger, more flexible
rings solvolyze at rates similar to or higher than those observed
for the related acyclic E-2-butenyl sulfonates.25 This observation
suggests that vinyl cations prefer to adopt a linear geometry.
Saturated carbocations where an electronegative substituent is
attached directly to the carbon atom bearing the positive charge
have been extensively studied.26 In contrast, examples of
“destablized” vinyl cations are rare but have been implicated
as intermediates in the synthesis of â-functionalized alkynyl-
(phenyl)iodonium salts.27 Likewise, the photolysis of R-formyl
and R-cyano vinyl halides affords products derived from the
corresponding electronegatively-substituted vinyl cations.28
(2) For reviews of various aspects of vinyl cation chemistry, see: (a)
Nefedov, V. D.; Sinotova, E. N.; Lebedev, V. P. Russ. Chem. ReV. 1992,
61, 283. (b) Rappoport, Z. React. Intermed. 1983, 3, 427. (c) Shchegolev,
A. A.; Kanishchev, M. I. Russ. Chem. ReV. 1981, 50, 553. (d) Stang, P. J.;
Rappoport, Z.; Hanack, M.; Subramanian, L. B. Vinyl Cations; Academic
Press: New York, 1979. (e) Stang, P. J. Acc. Chem. Res. 1978, 11, 107. (f)
Hanack, M. Angew. Chem., Int. Ed. Engl. 1978, 17, 333. (g) Hanack, M.
Acc. Chem. Res. 1976, 9, 364. (h) Rappoport, Z. Acc. Chem. Res. 1976, 9,
265. (i) Taniguchi, H.; Kobayashi, S.; Sonada, T. Kagaku No Ryoiki 1976,
30, 689. (j) Subramanian, L. R.; Hanack, M. J. Chem. Ed. 1975, 52, 80.
(k) Modena, G.; Tonellato, U. Chim. Ind. (Milan) 1974, 56, 80. ( l) Stang,
P. J. Prog. Phys. Org. Chem. 1973, 10, 205. (m) Grob, C. A. Chimia 1971,
25, 87. (n) Modena, G.; Tonellato, U. AdV. Phys. Org. Chem. 1971, 9, 185.
(o) Hanack, M. Acc. Chem. Res. 1970, 3, 209.
(3) Fittig, R.; Schrohe, A. Chem. Ber. 1875, 8, 367. Gustavson, G.;
Demjanoff, N. J. Prakt. Chem. 1888, 38, 201.
(4) Jacobs, T. L.; Searles,S., Jr. J. Am. Chem. Soc. 1944, 66, 686.
(5) Grob, C. A.; Cseh, G. HelV. Chim. Acta 1964, 47, 194.
The sp-hybridized carbon atom of a vinyl cation possesses
an empty π-orbital. As a result, atoms possessing nonbonding
pairs of electrons, multiple bonds, and σ-bonds react rapidly
with these reactive intermediates. For example, the solvolysis
of vinyl derivatives in oxygen-containing solvents typically
affords vinyl ethers and ketones as products which is the
consequence of deprotonation of an intermediate oxonium ion.29
Vinyl cations can also undergo reactions with the electrons of
C-H and C-C σ-bonds. The deprotonation and rearrangement
of vinyl cations to produce alkynes are examples of such σ-bond
reactions. Rearrangement of these unsaturated cations can be
classified into two general categories: (1) migration to the
double bond with the formation of an allylic cation (1 f 2)
and (2) migration of an alkyl group across the double bond
whereby one vinyl cation is isomerized to another (3 f 4).
These rearrangements generally occur when a more stable ion
is formed from a less stable progenitor.
(6) Koch, E.-W.; Siehl, H.-U.; Hanack, M. Tetrahedron Lett. 1985, 26,
1493. Abram, T. S.; Watts, W. E. J. Chem. Soc., Perkin Trans. 1 1977,
1522. Abram, T. S.; Watts, W. E. J. Chem. Soc., Chem. Commun. 1974,
857.
(7) Siehl, H.-U.; Carnahan, J. C., Jr.; Eckes, L.; Hanack, M. Angew.
Chem., Int. Ed. Engl. 1974, 13, 675.
(8) Siehl, H.-U.; Kaufmann, F.-P.; Apeloig, Y.; Braude, V.; Danovich,
D.; Berndt, A.; Stamatis, N. Angew. Chem., Int. Ed. Engl. 1991, 30, 1479.
(9) Edens, M.; Boerner, D.; Chase, C. R.; Nass, D.; Schiavelli, M. D. J.
Org. Chem. 1977, 42, 3403. Marcuzzi, F.; Melloni, G. J. Am. Chem. Soc.
1976, 98, 3295. Verhelst, W. F.; Drenth, W. J. Am. Chem. Soc. 1974, 96,
6692. Peterson, P. E.; Bopp, R. J. J. Am. Chem. Soc. 1967, 89, 1283.
(10) Pasto, D. J.; Miles, M. F.; Chou, S.-K. J. Org. Chem. 1977, 42,
3098. Amar, F.; Dalton, D. R.; Eisman, G.; Haugh, M. J. Tetrahedron Lett.
1974, 3037. Poutsma, M. L.; Ibaria, P. A. J. Am. Chem. Soc. 1971, 93,
440. Pittman, C. U., Jr. Chem. Commun. 1969, 122. Bianchini, J. P.;
Guillemonat, A. Bull. Soc. Chim. Fr. 1968, 2120.
(11) Hanack, M.; Spang, W. Chem. Ber. 1980, 113, 2015. Collins, C.
J.; Benjamin, B. M.; Hanack, M.; Stutz, H. J. Am. Chem. Soc. 1977, 99,
1669. Stutz, H.; Hanack, M. Tetrahedron Lett. 1974, 2457. Gary, R.;
Vessie`re, R. Tetrahedron Lett. 1972, 2983.
(12) Santelli, M.; Bertrand, M. Tetrahedron 1974, 30, 227. Ragonnet,
B.; Santelli, M.; Bertrand, M. HelV. Chim. Acta 1974, 57, 557. Bertrand,
M.; Rouvier, C. S. Bull. Soc. Chim. Fr. 1973, 1800. Sekera, M. H.;
Weissman, B. A.; Bergmann, R. B. Chem. Commun. 1973, 679.
(13) Hassdenteufel, J. R.; Hanack, M. Tetrahedron Lett. 1980, 503. Stang,
P. J.; Hargrove, R. J.; Dueber, T. E. J. Chem. Soc., Perkin Trans. 2 1977,
1486. Ja¨ckel, K. P.; Hanack, M. Chem. Ber. 1977, 110, 199. Sonoda, T.;
Kobayashi, S.; Taniguchi, H. Bull. Chem. Soc. Jpn. 1976, 49, 2560. Sonoda,
T.; Kawakami, M.; Ikeda, T.; Kobayashi, S.; Taniguchi, H. J. Chem. Soc.,
Chem. Commun. 1976, 612. Salaun, J.; Hanack, M. J. Org. Chem. 1975,
40, 1994.
The aldol condensation of lithio-acyldiazomethanes 5 with
aldehydes or ketones constitutes a facile method for the synthesis
(21) Hanack, M.; Ma¨rkl, R.; Garc´ıa Martinez, A. Chem. Ber. 1982, 115,
772. Summerville, R. H.; Senkler, C. A.; Schleyer, P. v. R.; Deuber, T. E.;
Stang, P. J. J. Am. Chem. Soc. 1974, 96, 1100. Summerville, R. H.; Schleyer,
P. v. R. J. Am. Chem. Soc. 1972, 94, 3629. Stang, P. J.; Summerville, R.
H. J. Am. Chem. Soc. 1969, 91, 4600.
(14) Bott, K. Chem. Ber. 1994, 127, 933. Szele, I.; Tencer, M.; Zollinger,
H. HelV. Chim. Acta 1983, 66, 1704. Lee, C. C.; Ko, E. C. F. Can. J. Chem.
1978, 56, 2459. Lee, C. C.; Ko, E. C. F. Can. J. Chem. 1976, 54, 3041.
Hanack, M.; Harding, C. E.; Derocque, J. L. Chem. Ber. 1972, 105, 421.
Nishimura, A.; Kato, H.; Ohta, M. Bull. Chem. Soc. Jpn. 1970, 43, 1530.
Jones, W. M.; Miller, F. W. J. Am. Chem. Soc. 1967, 89, 1960.
(15) Grob, C. A.; Wenk, P. Tetrahedron Lett. 1976, 4195. Grob, C. A.;
Wenk, P. Tetrahedron Lett. 1976, 4191. Grob, C. A.; Csapilla, J.; Cseh, G.
HelV. Chim. Acta 1964, 47, 1590.
(16) Kitamura, T.; Kobayashi, S.; Taniguchi, H. J. Am. Chem. Soc. 1986,
108, 2641. Kropp, P. J.; McNeely, S. A.; Davis, R. D. J. Am. Chem. Soc.
1983, 105, 6907. Schnabel, W.; Naito, I.; Kitamura, T.; Kobayashi, S.;
Taniguchi, H. Tetrahedron 1980, 36, 3229. Kitamura, T.; Kobayashi, S.;
Taniguchi, H. Tetrahedron Lett. 1979, 1619. McNeely, S. A.; Kropp, P. J.
J. Am. Chem. Soc. 1976, 98, 4319.
(22) For a review, see: Stang, P. J.; Hanack, M.; Subramanian, L. R.
Synthesis 1982, 85.
(23) Subramanian, K.; Hanack, M. Tetrahedron Lett. 1973, 3365. Eckes,
L.; Subramanian, L. R.; Hanack, M. Tetrahedron Lett. 1973, 1967.
Subramanian, L. R.; Hanack, M. Chem. Ber. 1972, 105, 1465.
(24) Peterson, P. E.; Indelicato, J. M. J. Am. Chem. Soc. 1968, 90, 6516.
Subramanian, L. R.; Hanack, M. J. Org. Chem. 1977, 42, 174.
(25) Hargrove, R. J.; Stang, P. J. Tetrahedron 1976, 32, 37. Lamparter,
E.; Hanack, M. Chem. Ber. 1972, 105, 3789. Pfeifer, W. D.; Bahn, C. A.;
Schleyer, P. v. R.; Bocher, S.; Harding, C. E.; Hummel, K.; Hanack, M.;
Stang, P. J. J. Am. Chem. Soc. 1971, 93, 1513.
(26) Creary, X. Chem. ReV. 1991, 91, 1625. Tidwell, T. T. Angew. Chem.,
Int. Ed.Engl. 1984, 23, 20.
(27) Williamson, B. L.; Stang, P. J.; Arif, A. M. J. Am. Chem. Soc. 1993,
115, 2590.
(17) Danieli, B.; Ronchetti, F.; Russo, G. Chem. Ind. (London) 1973,
1067.
(18) Huang, S. J.; Hsu, E. T. Tetrahedron Lett. 1971, 1385.
(19) Lossing, F. P.; Holmes, J. L. J. Am. Chem. Soc. 1984, 106, 6917.
Apeloig, Y.; Franke, W.; Rappoport, Z.; Schwarz, H.; Stahl, D. J. Am. Chem.
Soc. 1981, 103, 2770. Huang, S. J.; Lessard, M. V. J. Am. Chem. Soc.
1968, 90, 2432.
(28) Krijnen, E. S.; Lodder, G. Tetrahedron Lett. 1993, 34, 729.
(29) Rappoport, Z.; Kaspi, J.; Tsidoni, D. J. Org. Chem. 1984, 49, 80.
Rappoport, Z.; Pross, N. J. Org. Chem. 1980, 45, 4309. Rappoport, Z.;
Apeloig, Y.; Greenblatt, J. J. Am. Chem. Soc. 1980, 102, 3837. Rappoport,
Z.; Apeloig, Y. J. Am. Chem. Soc. 1975, 97, 836. Rappoport, Z.; Kaspi, J.
J. Am. Chem. Soc. 1974, 96, 4518. Rappoport, Z.; Kaspi, J.; Apeloig, Y. J.
Am. Chem. Soc. 1974, 96, 2612. Rappoport, Z.; Gal, A. J. Chem. Soc.,
Perkin Trans. 2 1973, 301. Rappoport, Z.; Gal, A. J. Org. Chem. 1972, 37,
1174.
(20) Fornarini, S.; Speranza, M. Tetrahedron Lett. 1984, 25, 869.
Speranza, M. Gazz. Chim. Ital. 1983, 113, 37.