ORGANIC
LETTERS
2013
Vol. 15, No. 24
6128–6131
Total Synthesis of Human Galanin-Like
Peptide through an Aspartic Acid Ligation
Xiaoyang Guan, Matthew R. Drake, and Zhongping Tan*
Department of Chemistry and Biochemistry and BioFrontiers Institute, University of
Colorado, Boulder, Colorado 80303, United States
Received October 16, 2013
ABSTRACT
Human galanin-like peptide (hGALP) is a newly discovered hypothalamic peptide that plays important roles in the regulation of food intake and
energy balance. Here, we demonstrate that the aspartic acid ligation can be employed to achieve an efficient synthesis of hGALP. The total
synthesis of hGALP enhances our ability to study its biology and facilitates the development of more stable analogues.
Chemical synthesis is a valuable tool for studying
the structure and function of naturally occurring proteins
as well as modified and engineered proteins because it
imparts a previously unattainable level of control over
protein composition.1 Encouraged by previous studies on
protein chemical synthesis, we initiated a program directed
toward the total chemical synthesis of a newly discovered
neuropeptide, human galanin-like peptide (hGALP).2
Recent findings have revealed that GALP plays important
roles in energy metabolism, thermoregulation, reproduc-
tion, as well as appetite control.3 When administered by
intracerebroventricular (i.c.v.) injection, GALP decreases
overall food intake and causes a decrease in body weight in
rats.4 Because of its important physiological functions,
there is a strong interest in developing GALP as a ther-
apeutic for the treatment of obesity.3 However, similar to
other peptide regulators, GALP has a very short half-life in
blood, which necessitates frequent injections or infusions.5
Therefore, the development of metabolically more stable
analogues of GALP is needed. Chemical synthesis could be
well suited for this purpose. As has been widely demon-
strated, once a general synthetic route to GALP is estab-
lished, its synthetic variants can be produced relatively
quickly. In principle, GALP analogues with more suitable
bioprofiles can be identified by screening the collection of
its synthetic variants.
(1) (a) Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B.
Science 1994, 266, 776. (b) Erlanson, D. A.; Chytil, M.; Verdine, G. L.
Chem. Biol. 1996, 3, 981. (c) Muir, T. W.; Sondhi, D.; Cole, P. A. Proc.
Natl. Acad. Sci. U.S.A. 1998, 95, 6705. (d) Beligere, G. S.; Dawson, P. E.
Biopolymers 1999, 51, 363. (e) Marcaurelle, L. A.; Mizoue, L. S.; Wilken,
J.; Oldham, L.; Kent, S. B.; Handel, T. M.; Bertozzi, C. R. Chemistry
2001, 7, 1129. (f) Grogan, M. J.; Kaizuka, Y.; Conrad, R. M.; Groves,
J. T.; Bertozzi, C. R. J. Am. Chem. Soc. 2005, 127, 14383. (g) Yamamoto,
N.; Tanabe, Y.; Okamoto, R.; Dawson, P. E.; Kajihara, Y. J. Am. Chem.
Soc. 2008, 130, 501. (h) Piontek, C.; Ring, P.; Harjes, O.; Heinlein, C.;
€
€
ꢀ
Mezzato, S.; Lombana, N.; Pohner, C.; Puttner, M.; Varon Silva, D.;
Martin, A.; Schmid, F. X.; Unverzagt, C. Angew. Chem., Int. Ed. 2009,
48, 1936. (i) Kumar, K. S.; Bavikar, S. N.; Spasser, L.; Moyal, T.;
Ohayon, S.; Brik, A. Angew. Chem., Int. Ed. 2011, 50, 6137. (j) Shang, S.;
Tan, Z.; Danishefsky, S. J. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 5986.
(k) Wilkinson, B. L.; Stone, R. S.; Capicciotti, C. J.; Thaysen-Andersen,
M.; Matthews, J. M.; Packer, N. H.; Ben, R. N.; Payne, R. J. Angew.
Chem., Int. Ed. 2012, 51, 3606. (l) Wang, P.; Dong, S.; Brailsford, J. A.;
Iyer, K.; Townsend, S. D.; Zhang, Q.; Hendrickson, R. C.; Shieh, J.;
Moore, M. A.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2012, 51, 11576.
(m) Zhan, C.; Varney, K.; Yuan, W.; Zhao, L.; Lu, W. J. Am. Chem. Soc.
2012, 134, 6855.
The synthesis of hGALP (1) may be achieved in several
ways. Detailed analysis of its sequence suggested to us the
possibility of disconnecting it into two fragments (1ꢀ31) 3
(3) Shioda, S.; Kageyama, H.; Takenoya, F.; Shiba, K. Int. J. Obes.
2011, 35, 619.
(4) Kumano, S.; Matsumoto, H.; Takatsu, Y.; Noguchi, J.; Kitada,
C.; Ohtaki, T. Endocrinology 2003, 144, 2634.
(5) Nonaka, N.; Farr, S. A.; Kageyama, H.; Shioda, S.; Banks, W. A.
J. Pharmacol. Exp. Ther. 2008, 325, 513.
(2) Ohtaki, T.; Kumano, S.; Ishibashi, Y.; Ogi, K.; Matsui, H.;
Harada, M.; Kitada, C.; Kurokawa, T.; Onda, H.; Fujino, M. J. Biol.
Chem. 1999, 274, 37041.
r
10.1021/ol402984r
Published on Web 11/22/2013
2013 American Chemical Society