16186 J. Phys. Chem., Vol. 100, No. 40, 1996
Scherl et al.
(7) (a) Haarer, D. In Presistent Spectral Hole Burning: Science and
Applications. Top. Curr. Phys. 1988, 44, and references therein. (b)
Ku¨mmerl, R. A.; Scherl, M.; Haarer, D. Opt. Memories Neural Networks
1994, 3, 377. (c) Friedrich, J.; Haarer, D. Angew. Chem., Int. Ed. Engl.
1984, 23, 133. (d) Castro, G.; Haarer, D.; Macfarlane, R. M.; Trommsdorff,
H. P. US Patent 4101976, 1976.
from the benzylic carbon. The arrangement in which both the
pyridine nitrogen and the o-nitro oxygen bind to the same proton
and are located on the same side of the molecule is found only
in the photochromic crystals.
Environmental effects are not restricted to the control of
excited-state properties. The significant changes in the observed
kinetic barriers and preexponential factors for the different
processes (Tables 4 and 5) could not be rationalized upon
utilizing molecular parameters. Preliminary simulations suggest
the involvement of the o-nitro group as a chaperone escorting
the proton along its path. The presence of other neighboring
basic groups in close vicinity implies a more complicated
picture. Clearly, the further development of better photochromic
systems based on proton transfer, having controllable properties
will require the uncovering and mastering of new schemes for
the control of these environmental factors of supramolecular
nature.
(8) Ireland, J. F.; Wyatt, P. A. H. AdV. Phys. Org. Chem. 1976, 12,
131.
(9) Schmidt, G. M. J. In Solid State Photochemistry; Ginsburg, D.,
Ed.; Verlag-Chimie: Weinheim, 1976.
(10) (a) Organic Photochemistry; Padwa, A., Ed.; Marcel Dekker: New
York; Vol. 8 and 11. (b) Huffman, K. R.; Loy, M.; Ullman, E. F. J. Am.
Chem. Soc. 1965, 87, 5417.
(11) (a) Kawato, T.; Koyama, H.; Kanatomi, H.; Isshiki, M. J.
Photochem. 1985, 28, 103. (b) Kawato, T.; Kanatomi, H.; Koyama, H.;
Igrashi, T. J. Photochem. 1986, 33, 199. (c) Koyama, H.; Kawato, T.;
Kanatomi, H.; Matsushita, H.; Yonetani, K. J. Chem. Soc., Chem. Commun.
1994, 579.
(12) Reetz, M. T.; Hoger, S.; Harms, K. Angew. Chem., Int. Ed. Engl.
1994, 33, 181; Agnew. Chem. 1994, 106, 193.
(13) (a) Miati, T.; Saito, G.; Urayama, H. Phys ReV. Lett. 1988, 60,
2299. (b) Miati, T. Mol. Cryst. Liq. Cryst. 1989, 171, 343.
(14) Hadjoudis, E. In ref 1a and references therein.
(15) (a) Sixl, H.; Warta, R. Chem. Phys. 1985, 94, 147. (b) Seff, K.;
Trueblood, K. N. Acta Crystallogr. 1968, B24, 1406.
(16) Chichibabin, A. E.; Kunidzhi, B. M.; Benewolenskaja, S. W. Ber.
Dtsch. Chem. Ges. 1925, 28, 1580.
Further experiments, designed to better understand the
correlation between the structure and reactivity in such systems,
are underway in our laboratories.
(17) (a) ReactiVity of the Photoexcited Organic Molecule; Schmidt, G.
M. J. Interscience: New York, 1967. (b) Bergman, J.; Leiserowitz, L.;
Schmidt, G. M. J. J. Chem. Soc. 1964, 2068. (c) Kawato, T.; Koyama, H.;
Kanatomi, H.; Isshiki, M. J. Photochem. 1985, 28, 103. (d) Kawato, T.;
Kanatomi, H.; Koyama, T.; Igarashi, T. J. Photochem. 1986, 33, 199. (e)
Kawato, T.; Koyama, H.; Kanatomi, H.; Tagawa, H.; Iga, K. J. Photochem.
Photobiol. A: Chem. 1994, 78, 71.
(18) (a) Hoshino, N.; Inabe, T.; Mitani, Maruyama, Y. Bull. Chem. Soc.
Jpn. 1988, 61, 4207. (b) Inabe, T.; Gautier-Luneau, I.; Hoshino, N.;
Okaniwa, K.; Okamoto, H.; Mitani, T.; Nagashima, U.; Maruyama, Y. Bull.
Chem. Soc. Jpn. 1991, 64, 801. (c) Wozniak, K.; He, H.; Klinowski, J.;
Jones, W. J. Chem. Soc., Faraday Trans. 1995, 91, 77. (d) Inabe, T.;
Hoshino, N.; Mitani, T.; Maruyama, Y. Bull. Chem. Soc. Jpn. 1989, 62,
2245.
(19) (a) Clark, W. C.; Lothian, G. F. Trans. Faraday Soc. 1958, 54,
1790. (b) Hardwick, R.; Mosher, H. S.; Assailaigue, P. P. Trans. Faraday
Soc. 1960, 56, 44.
(20) Cohen, M. D.; Schmidt, G. M. J.; Flavian, S. J. Chem. Soc. 1964,
2041.
(21) Anderson, D. G.; Wettermark, G. J. Am. Chem. Soc. 1965, 87,
1433.
(22) The Theory of Unimolecular and Recombination Reactions; Gilbert,
R. G., Smith, S. C., Eds.; Blackwell: Oxford, 1990.
Acknowledgment. This work was supported by the EC
ESPRIT program (No. 7238). The authors have deposited
atomic coordinates for all structures with the Cambridge
Crystallographic Data Center. The coordinates can be obtained,
on request, from the Director, Cambridge Crystallographic Data
Center, 12 Union Road, Cambridge CB2 1EZ, UK.
References and Notes
(1) (a) Photochromism: Molecules and Systems. Studies in Organic
Chemistry 40; Durr, H., Bouas-Laurant, H., Eds.; Elsevier: Amsterdam,
1990; Chapters 23-29, and references therein. (b) Irie, M. Iga, R.
Macromolecules 1986, 19, 2480. (c) Mamada, A.; Tanaka, T.; Kung-
watchakun, D.; Irie, M. Macromolecules 1990, 23, 1517. (c) Shvartsman,
F. P.; Krongauz, V. A. J. Phys. Chem. 1984, 88, 6448. (d) Anzai, J.-C.;
Sakamura, K.; Osa, T. J. Chem. Soc., Chem. Commun. 1992, 888. (e)
Willner, I.; Rubin, S.; Shatzmiller, R.; Zor, T. J. Am. Chem. Soc. 1993,
115, 8690. (f) Optical Processing and Computing; Arsenault, A., Ed.;
Academic Press: New York, 1989. (g) Brige, R. R. Annu. ReV. Phys. Chem.
1990, 41, 683. (h) Friedrich, J.; Haarer, D. Angew. Chem., Int. Ed. Engl.
1984, 23, 133. (i) Ao, R.; Ku¨mmerl, L.; Haarer, D. AdV. Mater. 1995, 7,
495.
(2) (a) The Proton in Chemistry, 2nd ed.; Bell, R. P., Ed.; Cornell
University Press: Ithaca, NY, 1973. (b) Weller, A. Prog. React. Kinet. 1961,
1, 189. (c) ReactiVity of Photo-excited Organic Molecules; Porter, G., Ed.;
Interscience Publishers, Wiley: London, 1967. (d) Kosower, E. M.; Huppert,
D. Annu. ReV. Phys. Chem. 1986, 37, 127. (e) Marcus, R. A. J. Phys. Chem.
1968, 72, 891. (f) Photochromism: Molecules and Systems. Studies in
Organic Chemistry 40; Chapters 16 and 17, Du¨rr, H., Bouas-Laurant, H.,
Eds.; Elsevier: Amsterdam, 1990.
(23) Frank, I.; Grimme, S.; Peyerimhoff, S. D. J. Phys. Chem. 1996,
100, 16187.
(24) (a) Center-to-center distances. (b) Using a repetitive grinding
irradiating cycle until the powders did not change color in grinding. (c)
Corval, A.; Kuldova´, K.; Eichen, Y.; Pikramenou, Z.; Lehn, J. M.;
Trommsdorff, H. P. in preparation. (d) The relative quantum yield is given
by the formation of the phototautomer, assuming that the absolute quantum
yield is low (<0.2, in our experiments, no saturation effect could be observed
in the high-temperature regime) and other nonradiative deactivation
processes are not temperature dependent. (e) Relative quantum yields were
measured by normalizing the light flux using a fulgide dye as actinometer25
and assuming similar extinction coefficients for the different “NH”
tautomers. (f) Our measured barriers and lifetimes are somewhat different
from those reported in ref 15a. (g) Calculation were performed using a
data set where the coordinate of all atoms but the pyridine nitrogen, the
benzylic protons, and the o-nitro group are fixed.
(3) Stoeckenius, W.; Bogomolni, R. A. Annu. ReV. Biochem. 1982,
52, 587.
(4) (a) Osterhelt, D.; Brau¨chle, C.; Hampp, N. Q. ReV. Biophys. 1991,
24, 425. (b) Brau¨chle, C.; Hampp, N.; Osterhelt, D. AdV. Mater. 1991, 3,
420.
(5) Ku¨mmerl, L.; Wo¨hrl, H.; Haarer, D. Chem. Phys. Lett. 1994, 227,
337. (b) Braun, J.; Schlabach, M.; Wehrle, B.; Ko¨her, M.; Voegl, E.;
Limbach, H. H. J. Am. Chem. Soc. 1994, 116, 6593.
(6) Small, G. J. In Spectroscopy and Excitation Dynamics of
Condensed Molecular Systems; Agranovich, V. M., Hochstrasser, R. M.,
Eds.; North-Holland Publishing Co.: Amsterdam, 1983.
(25) Heller, H. G.; Langan, J. R. J. Chem. Soc., Perkin Trans. 2, 1981,
341.
JP9609242