10.1002/anie.201902636
Angewandte Chemie International Edition
COMMUNICATION
acridinium cations have often been used in photocatalytic redox
applications,15 the present molecules might provide new building
blocks for electrochemically active functional materials.
Keywords: Bistricyclic aromatic enes • Overcrowded alkenes •
Ground state mechanochromism • Conformer • Acridinium
Finally, we measured the charge carrier transport properties
of N-aryl-FA by space-charge limited current (SCLC)
measurements (Figures S19–S21).24 Hole and electron devices
were fabricated with configurations of ITO/PEDOT:PSS/N-aryl-
FA/MoO3/Al and ITO/4a/Al, respectively. The hole and electron
mobilities of 4a were 1.1 × 10–6 and 9.8 × 10–5 cm2/Vs,
respectively. This ambipolar transport property is attributable to
the formation of acridinium cation and fluorenyl anion as positive
and negative charge carriers, respectively. With electron-donating
OMe (4c) and electron-withdrawing F (4f) groups on the phenyl
group, hole mobilities increased and decreased to 3.8 × 10–6 and
9.0 × 10–8 cm2/Vs, respectively. These data imply that enhancing
charge transfer character stabilizes the twisted conformer and
thereby increases hole transport ability. Hole mobility was further
increased by doping of the oxidized form (acridinium 6) into 4a.
The thin film of the mixture of 4a and 10 wt% 6 had hole mobility
of μh = 9.9 x 10–5 cm2/Vs. Controllable charge carrier mobility via
tuning of the conformer ratio by changing the substituent and via
application of external stimuli will be a fascinating feature of these
semiconducting molecules to explore.
[1]
[2]
a) H. Meyer, Ber. Dtsch. Chem. Ges. B. 1909, 42, 143–145. b) H. Meyer,
Monatsh. Chem. 1909, 30, 165–177.
a) A. M. Schoevaars, W. Kruizinaga, R. W. J. Zijlstra, N. Veldman, A. L.
Speck, B. L. Feringa, J. Org. Chem. 1997, 62, 4943–4948. b) A. Cnossen,
J. C. M. Kistemaker, T. Kojima, B. L. Feringa, J. Org. Chem. 2014, 79,
927–935.
[3]
[4]
[5]
P. U. Biedermann, J. J. Stezowski, I. Agranat, Chem. Eur. J. 2006, 12,
3345–3354.
T. Suzuki, H. Okada, T. Nakagawa, K. Komatsu, C. Fujimoto, H. Kagi, Y.
Matsuo, Chem. Sci. 2018, 9, 475–482.
a) E. Wasserman, R. E. Davies, J. Chem. Phys. 1959, 30, 1367–1368.
b) R. Korenstein, K. A. Muszkat, S. Sharafy-Ozeri, J. Am. Chem. Soc.
1973, 95, 6177–6181.
[6]
a) J. H. Day, Chem. Rev. 1963, 63, 65–80. b) E. D. Bergmann, Prog. Org.
Chem. 1955, 3, 81–171. c) H. Bouas-Laurent, H. Dürr, Pure Appl. Chem.
2001, 73, 639–665.
[7]
[8]
D. L. Fanselow, H. G. Drickamer, J. Chem. Phys. 1974, 61, 4567–4574.
T. Bercovici, R. Korenstein, K. A. Muszkat, E. Fischer, Pure Appl. Chem.
1970, 24, 531–565.
[9]
a) W. Theilacker, G. Kortüm, G. Friedheim, Chem. Ber. 1950, 83, 508–
519. b) W. T. Grubb, G. B. Kistiakowsky, J. Am. Chem. Soc. 1950, 72,
419–424. c) Y. Hirshberg, E. Fischer, J. Chem. Soc. 1953, 629–636.
[10] H. Takezawa, T. Murase, M. Fujita, J. Am. Chem. Soc. 2012, 134,
17420–17423.
In summary, we have successfully synthesized N-aryl FAs
through the CuI-catalyzed amination and Barton-Kellogg olefin
formation reaction from N-aryl thioacridone and diazofluorene.
The N-aryl substituents provide a facile way to tune the electronic
properties of the N-aryl FAs to find a good balance between their
folded and twisted conformers. By using electron-donating phenyl
groups, we could produce predominantly the twisted conformer,
which is more intriguing for functional material applications. On
the other hand, the presence of the folded conformer is essential
for various chromic functions. By using an electron-withdrawing
group such as a nitro group, the folded conformer can be
stabilized for realizing mechanochromism, thermochromism, and
vapochromism. Proton-induced chromism is facilitated by stable
formation of acridinium, which suggests new functions such as
acridinium-based oxidation ability switched by protons. X-ray
crystallographic analyses of both the folded and twisted
conformers were accomplished by substituent control.
Comparison of both structures provided a clue to understanding
the charge transfer from the electron-donating acridane moiety to
the electron-accepting fluorenylidene moiety. The advantage of
the nitrogen atom was also seen in the stable oxidation to
acridinium as a radical cation and the fair charge carrier transport
properties. These functions could play a crucial role in catalytic
and electronic applications. More importantly, the present studies
will contribute to understanding the chemistry of BAEs and
overcrowded alkenes to provide deeper knowledge of
fundamental physical organic and structural organic chemistry.
[11] T. Suzuki, T. Fukushima, T. Miyashi, T. Tsuji, Angew. Chem. Int. Ed. Engl.
1997, 36, 2495–2497.
[12] F. G. Brunetti, X. Gong, M. Tong, A. J. Heeger, F. Wudl, Angew. Chem.
Int. Ed. 2010, 49, 532−536.
[13] J. Xu, A. Takai, A. Bannaron, T. Nakagawa, Y. Matsuo, M. Sugimoto, Y.
Matsushita, M. Takeuchi, Mater. Chem. Front. 2018, 2, 780–784.
[14] J. Wang, K. Liu, L. Ma, X. Zhan, Chem. Rev. 2016, 116, 14675–14725.
[15] a) K. Ohkubo, K. Mizushima, R. Iwata, S. Fukuzumi, Chem. Sci. 2011, 2,
715–722. b) N. A. Romero, K. A. Margrey, N. E. Tay, D. A. Nicewicz,
Science 2015, 349, 1326–1330.
[16] a) D. H. R. Barton, B. J. Willis, J. Chem. Soc. D 1970, 1225–1226. b) R.
M. Kellogg, S. Wassenaar, Tetrahedron Lett. 1970, 11, 1987–1990.
[17] P.-C. Huang, K. Parthasarathy, C.-H. Cheng, Chem. Eur. J. 2013, 19,
460–464.
[18] Y. Hirao, N. Nagamachi, K. Hosoi, T. Kubo, Chem. Asian J. 2018, 13,
510–514.
[19] a) C. Reichardt, Chem. Rev. 1994, 94, 2319–2358. b) J. P. Cerón-
Carrasco, D. Jacquemin, C. Laurence, A. Planchat, C. Reichardt, K.
Sraïdi, J. Phys. Org. Chem. 2014, 27 512–518.
[20] a) D. H. Evans, R. W. Busch, J. Am. Chem. Soc. 1982, 104, 5057–5062.
b) B. A. Olsen, D. H. Evans, J. Electroanal. Chem. 1982, 136, 139–148.
[21] S. Kojima, T. Okamoto, K. Miwa, H. Sato, J. Takeya, Y. Matsuo, Org.
Electron. 2013, 14, 437–444.
[22] a) T. L. Andrew, T. M. Swager, J. Org. Chem. 2011, 76, 2976–2993 b) A.
V. Shchepochkin, O. N. Chupakhin, V. N. Charushin, D. V. Steglenko, V.
I. Minkin, G. L. Rusinov, A. I. Matern, RSC Adv. 2016, 6, 77834–77840.
[23] a) M. J. Kronenburg, K. Goubitz, C. A. Reiss, D. Heijdenrijk, Acta
Crystallogr. Sect. C 1989, 45, 1352–1353. b) M. Wera, P. Storoniak, I. E.
Serdiuk, B. Zadykowicz, J. Mol. Struct. 2016, 1105, 41–53.
[24] P. W. M. Blom, M. J. M. de Jong, J. J. M. Vleggaar, Appl. Phys. Lett.
1996, 68, 3308.
Acknowledgements
This work was also supported by Grants-in-Aid for Scientific
Research (JSPS KAKENHI Grant Numbers JP15H05760,
JP16H04187, and JP17K19116) from the Ministry of Education,
Culture, Sports, Science and Technology (MEXT), Japan. The
computations were performed using Research Center for
Computational Science, Okazaki, Japan.
This article is protected by copyright. All rights reserved.