D
L. C. Bouchez et al.
Letter
Synlett
prove highly useful in the context of the synthesis of clado-
sporin analogues and other cassiarin natural products. Fur-
ther results will be reported in due course.
and stirred under reflux over a period of 5 h. The excess of SOCl2
was then removed under reduced pressure. Under inert atmo-
sphere, the crude residue was taken into CH2Cl2, added drop-
wise to a solution of N,O-dimethylhydroxylamine hydrochloride
(1.1 equiv) and pyridine (2.2 equiv) at 0 °C (NB: final concentra-
tion must not exceed 0.1 mol/L) and slowly warmed to r.t. After
completion of the reaction, the crude mixture was diluted with
CH2Cl2, and rinsed three times with water. The organic phase
was decanted and was washed with a sat. solution of NaHCO3,
and neutralized with a solution HCl (1 M) until pH 7. The
organic layers were dried over anhydrous MgSO4, filtered, and
concentrated under reduced pressure. The residue was purified
by flash chromatography (gradient of eluent from 100% heptane
to 100% EtOAc) to afford the corresponding Weinreb amide.
Method B
Diisopropylethylamine (4 equiv, 0.1 mmol), followed by 1-ethyl-
3-(3-dimethylaminopropyl)carbodiimide hydrochloride (1 equiv
were sequentially added to a dry solution of the corresponding
carboxylic acid (1 equiv) in CH2Cl2 and stirred for 10 min at r.t.
N,O-Dimethylhydroxylamine hydrochloride (2 equiv) was
added, and the resulting mixture was stirred until all starting
materials were consumed (TLC and LC–MS monitoring). The
crude reaction was quenched with a sat. aq NH4Cl solution and
extracted with EtOAc. The organic layers were washed with a
sat. solution of NaCl, dried over anhydrous Na2SO4, and concen-
trated under reduced pressure. The residue was purified by
flash chromatography (gradient of eluent from 100% heptane to
100% EtOAc) affording the desired Weinreb amides.
Acknowledgment
This work was supported by the Global Discovery Chemistry (GDC)
department at the Novartis Institute for BioMedical Research (NIBR).
We would like to thank specifically Prof. Fabrice Denes and Prof. Mary
J. Sever for constructive discussions.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortioInfgrmoaitn
S
u
p
p
ortiInfogrmoaitn
References and Notes
(1) (a) Martins, P.; Jesus, J.; Santos, S.; Raposo, L. R.; Roma-
Rodrigues, C.; Baptista, P. V.; Fernandes, A. R. Molecules 2015,
20, 16852. (b) Kaushik, N. K.; Kaushik, N.; Attri, P.; Kumar, N.;
Kim, C. H.; Verma, A. K.; Choi, E. H. Molecules 2013, 18, 6620.
(c) Baumann, M.; Baxendale, I. R. Beilstein J. Org. Chem. 2013, 9,
2265.
(2) Marco-Contelles, J.; Pérez-Mayoral, E.; Samadi, A.; do Carmo
Carreiras, M.; Soriano, E. Chem. Rev. 2009, 109, 2652.
(3) (a) Koteeswari, P.; Sagadevan, S.; Mani, P. Int. J. Phys. Sci. 2013,
8, 1988. (b) Samuel, I. D. W.; Turnbull, G. A. Chem. Rev. 2007,
107, 1272. (c) Wang, G. T.; Mui, C.; Musgrave, C. B.; Bent, S. F.
J. Am. Chem. Soc. 2002, 124, 8990.
(4) (a) Meister, S.; Plouffe, D.; Kuhen, K.; Bonamy, G.; Barnes, S.;
Bopp, S.; Borboa, R.; Bright, A.; Che, J.; Cohen, S. Science 2011,
334, 1372. (b) Eastman, R. T.; Fidock, D. A. Nat. Rev. Microbiol.
2009, 7, 864.
(5) Hoepfner, D.; McNamara, C. W.; Lim, C. S.; Studer, C.; Riedl, R.;
Aust, T.; McCormack, S. L.; Plouffe, D. M.; Meister, S.; Schuierer,
S.; Plikat, U.; Hartmann, N.; Staedtler, F.; Cotesta, S.; Schmitt, E.
K.; Petersen, F.; Supek, F.; Glynne, R. J.; Tallarico, J. A.; Porter, J.
A.; Fishman, M. C.; Bodenreider, C.; Diagana, T. T.; Movva, N. R.;
Winzeler, E. A. Cell Host Microbe 2012, 11, 654 ;and references
cited therein.
See the Supporting Information for full characterization and
spectra.
(10) (a) Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S.
W. Chem. Soc. Rev. 2016, 45, 546. (b) Dai, H.-X.; Stepan, A. F.;
Plummer, M. S.; Zhang, Y.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2011,
133, 7222.
(11) Ke, Q.; Ferrara, E.; Radicchi, F.; Flammini, A. Proc. Natl. Acad. Sci.
U.S.A. 2015, 112, 7426.
(12) (a) Muir, C. W.; Kennedy, A. R.; Redmond, J. M.; Watson, A. J. B.
Org. Biomol. Chem. 2013, 11, 3337. (b) Anderson, H.; Wang, N.-C.
Can. J. Chem. 1977, 55, 4103.
(13) (a) Miyabe, H.; Asada, R.; Takemoto, Y. Org. Biomol. Chem. 2012,
10, 3519. (b) Nicola, T.; Schwarzrock, D.; Keller, M.; Eberbach,
W. Tetrahedron 2001, 57, 1771. For examples of alternative syn-
theses of related systems, see: (c) Wiles, J. A.; Hashimoto, A.;
Thanassi, J. A.; Cheng, J.; Incarvito, C. D.; Deshpande, M.; Pucci,
M. J.; Bradbury, J. J. Med. Chem. 2006, 49, 39. (d) Birchler, A. G.;
Liu, F.; Liebeskind, L. S. J. Org. Chem. 1994, 59, 7737.
(6) Scott, P. M.; Van Walbeek, W.; MacLean, W. M. J Antibiot. 1971,
24, 747.
(7) Oshimi, S.; Deguchi, J.; Hirasawa, Y.; Ekasari, W.;
Widyawaruyanti, A.; Wahyuni, T. S.; Zaini, N. C.; Shirota, O.;
Morita, H. J. Nat. Prod. 2009, 72, 1899.
(14) (a) Ho, T.-. L. Chem. Rev. 1975, 75, 1. (b) Pearson, R. G. J. Am.
Chem. Soc. 1963, 85, 3533.
(15) A ratio in favor of the enol form compared to the ketone form
was observed in the case of carbonyls bearing electron-with-
drawing aromatic groups. When reacting in the presence of het-
eroaromatic rings, such as thiophene, pyridine, and indole
rings, the equilibrium was in favor of the ketone form.
(16) General Procedure for the Preparation of β-Keto-Pyridyls
In a 50 mL dry three-neck round-bottom flask was introduced a
solution of 2,6-lutidine (2 equiv, 0.09 mmol) in THF under
argon. The solution was cooled to –78 °C and a solution of s-BuLi
(1.4 M in cyclohexane, 2.3 equiv) was added dropwise to the
reaction mixture, which was then stirred for 15–30 min at –78 °C.
A solution of the electrophile of choice (1 equiv) in THF was
then added dropwise and stirred for 15–60 min at –78 °C.
The crude reaction was quenched with a sat. aq NH4Cl solution
(8) (a) Press, N. J.; Taylor, R. J.; Fullerton, J. D.; Tranter, P.; McCarthy,
C.; Keller, T. H.; Arnold, N.; Beer, D.; Brown, L.; Cheung, R.;
Christie, J.; Denholm, A.; Haberthuer, S.; Hatto, J. D. I.; Keenan,
M.; Mercer, M. K.; Oakman, H.; Sahri, H.; Tuffnell, A. R.; Tweed,
M.; Trifilieff, A. J. Med. Chem. 2015, 58, 6747. (b) Li, B.; Wei, H.;
Li, H.; Pereshivko, O. P.; Peshkov, V. A. Tetrahedron Lett. 2015,
56, 5231. (c) Crawford, J. J.; Young, W. B. WO 2013067277, 2013.
(d) Elsner, J.; Harris, R. L.; Lee, B.; Mortensen, D.; Packard, G.;
Papa, P.; Perrin-Ninkovic, S.; Riggs, J.; Sankar, S.; Sapienza, J. WO
2010062571, 2010.
(9) General Procedure for the Preparation of Weinreb Amide
Method A
In a dry round-bottom flask, the corresponding carboxylic acid
(1 equiv, 0.5 mmol) was added to a solution of SOCl2 (20 equiv),
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–E