6888
J. Escorihuela et al. / Tetrahedron Letters 49 (2008) 6885–6888
4. (a) Arnold, L. A.; Naasz, R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2001,
123, 5841–5842; (b) Degrado, S. J.; Mizutani, H.; Hoveyda, A. H. J. Am. Chem. Soc.
2001, 123, 755–756; (c) Cesati, R.; de Armas, J.; Hoveyda, A. H. J. Am. Chem. Soc.
2004, 126, 96–101; (d) Scafato, P.; Larocca, A.; Rosini, C. Tetrahedron:
Asymmetry 2006, 17, 2511–2515; (e) Alexakis, A.; Bäckvall, J. E.; Krause, N.;
Pa`mies, O.; Die´guez, M. Chem. Rev. 2008, 108, 2796–2823.
to now reported for the Et2Zn conjugate addition to chalcones. The
conjugate additions of Me2Zn, due to the lower reactivity of this
organometallic reagent, were carried out under different experi-
mental conditions, that is, longer reaction time (24 h) in order to
obtain complete conversion (entry 6).
As described for other nickel-derived catalysts, enantioselectiv-
ity was only observed in the conjugate addition of Et2Zn to chal-
cones. For example, with ligand 2p, the nickel-catalyzed addition
of Et2Zn to 2-cyclohexen-1-one and 2-cyclopenten-1-one gave
the 1,4-product in 72% and 69% yield, respectively, but no enanti-
oselectivity was observed.
5. (a) Christoffers, J.; Koripelly, G.; Rosiak, A.; Rössle, M. Synthesis 2007, 1279–
1330; (b) Pavlov, V. A. Tetrahedron 2008, 64, 1147–1179.
6. (a) Soai, K.; Yokoyama, S.; Hayasaka, T.; Ebihara, K. J. Org. Chem. 1988, 53, 4148–
4149; (b) Soai, K.; Hayasaka, T.; Ugajin, S. J. Chem. Soc., Chem. Commun. 1989,
516–517; (c) Spieler, J.; Huttenloch, O.; Waldmann, H. Eur. J. Org. Chem. 2000,
391–399; (d) Cobb, A. J. A.; Marson, C. M. Tetrahedron 2005, 61, 1269–1279; (e)
Isleyen, A.; Dogan, O. Tetrahedron: Asymmetry 2007, 18, 679–684.
7. (a) Bolm, C.; Ewald, M. Tetrahedron Lett. 1990, 31, 5011–5012; (b) Bolm, C.
Tetrahedron: Asymmetry 1991, 2, 701–703; (c) Bolm, C.; Ewald, M.; Felder, M.
Chem. Ber. 1992, 125, 1205–1215; (d) Bolm, C.; Felder, M.; Müller, J. Synlett
1992, 439–440; (e) Kwong, H.-L.; Yeung, H.-L.; Yeung, C.-T.; Lee, W.-S.; Lee,
C.-S.; Wong, W.-L. Coord. Chem. Rev. 2007, 251, 2188–2222.
8. (a) de Vries, A. H. M.; Jansen, J. F. G. A.; Feringa, B. L. Tetrahedron 1994, 50,
4479–4491; (b) de Vries, A. H. M.; Imbos, R.; Feringa, B. L. Tetrahedron:
Asymmetry 1997, 8, 1467–1473.
9. Corma, A.; Iglesias, M.; Martín, M. V.; Rubio, J.; Sánchez, F. Tetrahedron:
Asymmetry 1992, 3, 845–848.
10. (a) Asami, M.; Usui, K.; Higuchi, S.; Inoue, S. Chem. Lett. 1994, 297–298; (b)
Wang, H.-S.; Da, C.-S.; Xin, Z.-Q.; Su, W.; Xiao, Y.-N.; Liu, D.-X.; Wang, R. Chin. J.
Chem. 2003, 21, 1105–1107.
11. (a) Uemura, M.; Miyake, R.; Nakayama, K.; Hayashi, Y. Tetrahedron: Asymmetry
1992, 3, 713–714; (b) Fujisawa, T.; Itoh, S.; Shimizu, M. Chem. Lett. 1994, 1777–
1778; (c) Tong, P.; Li, P.; Chan, A. S. C. Tetrahedron: Asymmetry 2001, 12, 2301–
2304; (d) Shadakshari, U.; Nayak, S. K. Tetrahedron 2001, 57, 8185–8188; (e)
Unaleroglu, C.; Aydin, A. E.; Demir, A. S. Tetrahedron: Asymmetry 2006, 17, 742–
749.
12. (a) Togni, A.; Venanzi, M. Angew. Chem., Int. Ed. Engl. 1994, 33, 497–527; (b)
Fache, F.; Schulz, E.; Tommasino, M. L.; Lemaire, M. Chem. Rev. 2000, 100,
2159–2231; (c) Hechavarría-Fonseca, M.; König, B. Adv. Synth. Catal. 2003, 345,
1173–1185.
In summary, we have shown that chiral
a-amino amides de-
rived from natural amino acids catalyzed the conjugate addition
of diethylzinc to chalcones with good enantioselectivities in the
presence of Ni(acac)2. Different structural modifications were
examined in order to optimize the enantioselectivity of the nick-
el-catalyzed conjugate addition. This process resulted in the selec-
tion of phenylglycine-based ligand 2p, with a phenyl group in the
amide moiety, which catalyzed the addition of diethylzinc to
substituted chalcones with enantioselectivities up to 84%. Those
enantioselectivities can be ranged between the best obtained for
this reaction. Further studies are in progress to study the scope
and mechanism of this process, and the potential application of
these catalytic systems using other metals and for other synthetic
transformations.
Acknowledgments
13. (a) Burguete, M. I.; Collado, M.; Escorihuela, J.; Galindo, F.; García-Verdugo, E.;
Luis, S. V.; Vicent, M. J. Tetrahedron Lett. 2003, 44, 6891–6894; (b) Burguete, M.
I.; Collado, M.; Escorihuela, J.; Luis, S. V. Angew. Chem., Int. Ed. 2007, 46, 9002–
9005.
14. Burguete, M. I.; Galindo, F.; Luis, S. V.; Vigara, L. Dalton Trans. 2007, 4027–4033.
15. (a) Pelagatti, P.; Carcelli, M.; Calbiani, F.; Cassi, C.; Elviri, L.; Pelizzi, C.; Rizzotti,
U.; Rogolino, D. Organometallics 2005, 24, 5836–5844; (b) Zaitsev, A. B.;
Adolfsson, H. Org. Lett. 2006, 8, 5129–5132.
16. (a) Becerril, J.; Bolte, M.; Burguete, M. I.; Galindo, F.; García-España, E.; Luis, S.
V.; Miravet, J. F. J. Am. Chem. Soc. 2003, 125, 6677–6686; (b) Alfonso, I.; Bolte,
M.; Bru, M.; Burguete, M. I.; Luis, S. V.; Rubio, J. J. Am. Chem. Soc. 2008, 130,
6137–6144.
17. (a) Takahashi, Y.; Tamamoto, Y.; Katagiri, K.; Danjo, H.; Yamaguchi, K.;
Imamoto, T. J. Org. Chem. 2005, 70, 9009–9012; (b) Biradar, D. B.; Gau, H.-M.
Tetrahedron: Asymmetry 2008, 19, 733–738.
Financial support from the Spanish Ministerio de Educación y
Ciencia (MEC, Projects CTQ2005-08016-C03) and Fundació Caixa
Castelló-UJI (Project P1-1B2004-13) is acknowledged. J.E. thanks
MEC-CSIC and UJI for a predoctoral fellowship.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
18. Yin, Y.; Li, X.; Lee, D.-S.; Yang, T.-K. Tetrahedron: Asymmetry 2000, 11, 3329–
3333.
19. (a) Kagan, H. B. In New Frontiers in Asymmetric Catalysis; Mikami, K., Lautens,
M., Eds.; John Wiley and Sons: Hoboken, New Jersey, 2007; pp 207–220; (b)
Puchot, C.; Samuel, O.; Dunach, E.; Zhao, S.; Agami, C.; Kagan, H. B. J. Am. Chem.
Soc. 1986, 108, 2353–2357.
20. (a) Arnold, L. A.; Imbos, R.; Mandoli, A.; de Vries, A. H. M.; Naasz, R.; Feringa, B.
L. Tetrahedron 2000, 56, 2865–2878; (b) Hu, Y.; Liang, X.; Zheng, Z.; Hu, X.
Tetrahedron: Asymmetry 2003, 14, 2771–2774.
21. Structures were computed using density functional theory using the nonlocal
hybrid Becke’s three-parameter exchange functional (denoted as B3LYP) with
LanL2DZ pseudopotential and the associated basis set for Ni and the 6-31G (d)
basis set for the rest of atoms using the GAUSSIAN 03 software package (see
Supplementary data for Gaussian citation).
1. (a) Noyori, R. Asymmetric Catalysis in Organic Synthesis; Wiley: New York,
1994; (b) Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A.,
Yamamoto, H., Eds.; Springer: Berlin, Heidelberg, New York, 2004.
2. (a) Noyori, R.; Kitamura, M. Angew. Chem., Int. Ed. 1991, 30, 49–69; (b) Soai, K.;
Niwa, S. Chem. Rev. 1992, 92, 833–856; (c) Pu, L.; Yu, H.-B. Chem. Rev. 2001, 101,
757–824.
3. (a) Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis. In
Tetrahedron Organic Chemistry Series 9; Pergamon Press: Oxford, UK, 1992;
(b) Rossiter, B. E.; Swingle, N. M. Chem. Rev. 1992, 92, 771–806; (c) Feringa, B. L.
Acc. Chem. Res. 2000, 33, 346–353; (d) Sibi, M. P.; Manyen, S. Tetrahedron 2000,
56, 8033–8061; (e) Krause, N.; Hoffmann-Röder, A. Synthesis 2001, 171–196; (f)
Alexakis, A.; Benhaim, C. Eur. J. Org. Chem. 2002, 3221–3236.