1766 J ournal of Medicinal Chemistry, 1997, Vol. 40, No. 12
Communications to the Editor
Ta ble 2. In Vitro and Intracellular Activity of Regioisomeric
Naphthalene Inhibitors
Ras processing and in clonogenic assays of tumor cell
growth in soft agar (activated Ha-ras and Ki-ras, as well
as activated tyrosine kinase with wild-type Ras) and has
formed the basis for further research which will be
reported in due course.
Ack n ow led gm en t. The authors thank N. Baudouy,
R. Boulay, F. Clerc, C. Colonna, H. Dubois, T. X. Q. K.
Faitg, M. Leroux, M.-F. Marzin, P. Mouton, and B. Sans
for their expert technical assistance. The financial
support of the Bioavenir program is gratefully acknowl-
edged.
IC50 (nM)
% inhibition
Ha-
Ras
Ki-
of Ras
Ras
processing
compd
position
Y
R
FTasea FTaseb THAC (10 µM)c
Su p p or tin g In for m a tion Ava ila ble: Experimental de-
tails and characterization data for compounds 1-7, 9, 11, 13,
15, and 18-20 (7 pages). Ordering information is given on
any current masthead page.
21 (Cys-(N-Me)Val-Tic-Met)
5
48
5.6
0 at 1 mM
0
0
4
5
7
18
5
5
5
6
6
6
O
H,H
H,H Me 325
O
H,H
H,H Me
H
H
20
0
10
>50
H
H
60
1.8
80
1250
17.5
500
Refer en ces
19 (RPR 113829)
20 (RPR 114334)
(1) Casey, P. J .; Solski, P. A.; Der, C. J .; Buss, J . E. p21ras is
Modified by a Farnesyl Isoprenoid. Proc. Natl. Acad. Sci. U.S.A.
1989, 86, 8323-8327.
(2) Rodenhuis, S. Ras and Human Tumors. Semin. Cancer Biol.
1992, 3, 241-247.
(3) Kato, K.; Cox, A. D.; Hisaka, M. M.; Graham, S. M.; Buss, J . E.;
Der, C. J . Isoprenoid Addition to Ras Protein is the Critical
Modification for its Membrane Association and Transforming
Activity. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 6403-6407.
(4) For a recent review, see: Hamilton, A. D.; Sebti, S. M. Inhibitors
of Ras Farnesyltransferase as Novel Antitumor Agents. Drug
News Perspect. 1995, 8, 138-145.
a
b
See Table 1, footnote b. IC50 using Ki-Ras as substrate; value
is the average of two or more IC50 measurements by SPA of FTase
using as first substrate a biotinylated fragment of the C-terminus
of Ki-Ras: [Biotin]-(A)3-SKDG-(K)6-SKTKCVIM (at a concentra-
tion equal to its Km, 55 nM) and as second substrate [3H]FPP (at
a concentration equal to its Km, 120 nM). c Percentage inhibition
of Ras protein processing in THAC cells (CCL39 cells transformed
with activated Ha-Ras)sassay conditions are described in ref 20.
(5) (a) Reiss, Y.; Goldstein, J . L.; Seabra, M. C.; Casey, P. J .; Brown,
M. S. Inhibition of p21ras Farnesylprotein Transferase by Cys-
AAX Tetrapeptides. Cell 1990, 62, 81-88. (b) Reiss, Y.; Stradley,
S. J .; Geirasch, L. M.; Brown, M. S.; Goldstein, J . L. Sequence
Requirement for Peptide Recognition by Rat Brain p21ras
Protein Farnesyltransferase. Proc. Natl. Acad. Sci. U.S.A. 1991,
88, 732-736.
(6) See, for example: (a) Kohl, N. E.; Mosser, S. D.; deSolms, S. J .;
Giuliani, E. A.; Pompliano, D. L.; Graham, S. L.; Smith, R. L.;
Scolnick, E. M.; Oliff, A.; Gibbs, J . B. Selective Inhibition of ras-
Dependent Transformation by a Farnesyltransferase Inhibitor.
Science 1993, 260, 1934-1937. (b) J ames, G. L.; Goldstein, J .
L.; Brown, M. S.; Rawson, T. E.; Somers, T. C.; McDowell, R. S.;
Crowley, C. W.; Lucas, B. K.; Levinson, A. D.; Marsters, J . C.,
J r. Benzodiazepine Peptidomimetics: Potent Inhibitors of Ras
Farnesylation in Animal Cells. Science 1993, 260, 1937-1942.
(c) Garcia, A. M.; Rowell, C.; Ackerman, K.; Kowalczyk, J . J .;
Lewis, M. D. Peptidomimetic Inhibitors of Ras Farnesylation and
Function in Whole Cells. J . Biol. Chem. 1993, 268, 18415-18418.
(d) Kohl, N. E.; Wilson, F. R.; Mosser, S. D.; Giuliani, E.;
deSolms, S. J .; Conner, M. W.; Anthony, N. J .; Gomez, R. P.;
Lee, T. J .; Smith, R. L.; Graham, S. L.; Hartman, G. D.; Gibbs,
J . B.; Oliff, A. Protein Farnesyltransferase Inhibitors Block the
Growth of ras-Dependent Tumors in Nude Mice. Proc. Natl.
Acad. Sci. U.S.A. 1994, 91, 9141-9145. (e) Qian, Y.; Blaskovich,
M. A.; Saleem, M.; Seong, C.-M.; Wathen, S. P.; Hamilton, A.
D.; Sebti, S. M. Design and Structural Requirements of Potent
Peptidomimetic Inhibitors of p21ras Farnesyltransferase. J . Biol.
Chem. 1994, 269, 12410-12413. (f) Graham, S. L.; deSolms, S.
J .; Giuliani, E. A.; Kohl, N. E.; Mosser, S. D.; Oliff, A. I.;
Pompliano, D. L.; Rands, E.; Breslin, M. J .; Deana, A. A.; Garsky,
V. M.; Scholz, T. H.; Gibbs, J . B.; Smith, R. L. Pseudopeptide
Inhibitors of Ras Farnesyl-Protein Transferase. J . Med. Chem.
1994, 37, 725-732. (g) Wai, J . S.; Bamberger, D. L.; Fisher, T.
E.; Graham, S. L.; Smith, R. L.; Gibbs, J . B.; Mosser, S. D.; Oliff,
A. I.; Pompliano, D. L.; Rands, E.; Kohl, N. E. Synthesis and
Biological Activity of Ras Farnesyl-Protein Transferase Inhibi-
tors. Tetrapeptide Analogues with Aminomethyl and Carbon
Linkages. Bioorg. Med. Chem. 1994, 2, 939-947. (h) Harrington,
E. M.; Kowalczyk, J . J .; Pinnow, S. L.; Ackermann, K.; Garcia,
A. M.; Lewis, M. D. Cysteine and Methionine Linked by Carbon
Pseudopeptides Inhibit Farnesyl Transferase. Bioorg. Med.
Chem. Lett. 1994, 4, 2775-2780. (i) Vogt, A.; Qian, Y.; Blask-
ovich, M. A.; Fossum, R. D.; Hamilton, A. D.; Sebti, S. M. A Non-
peptide Mimetic of Ras-CAAX: Selective Inhibtion of Farnesyl-
transferase and Ras Processing. J . Biol. Chem. 1995, 270, 660-
664. (j) deSolms, S. J .; Deana, A. A.; Giuliani, E. A.; Graham, S.
L.; Kohl, N. E.; Mosser, S. D.; Oliff, A. I.; Pompliano, D. L.;
Rands, E.; Scholz, T. H.; Wiggins, J . M.; Gibbs, J . B.; Smith, R.
L. Pseudopeptide Inhibitors of Ras Farnesyl-Protein Transferase.
J . Med. Chem. 1995, 38, 3967-3971. (k) Lerner, E. C.; Qian, Y.;
Blaskovich, M. A.; Fossum, R. D.; Vogt, A.; Sun, J .; Cox, A. D.;
Der, C. J .; Hamilton, A. D.; Sebti, S. M. Ras CAAX Peptidomi-
F igu r e 2. Graphical illustration of ratios derived from Table
1.
Ta ble 3. Inhibition of Anchorage-Independent Cell Growth by
RPR 114334 (20)
inhibition of cell growth in soft agar (IC50 µM)a
NIH 3T3 NIH 3T3 NIH 3T3 H 460 HCT 116
compound
Ha-Rasb Ki-Rasc
Srcd
5
Ki-Rase Ki-Rasf
RPR 114334
5
10
5
50
a
b
Assay conditions are described in ref 20. NIH 3T3 cells
transformed by Ha-ras (Val-12). c NIH 3T3 cells transformed by
d
Ki-ras (Val-12). NIH 3T3 cells transformed by c-src (Y527F).
e Human lung carcinoma cells containing a point mutation in Ki-
Ras (Gln61 to His61). f Human colon carcinoma cells containing a
point mutation in Ki-Ras (Gly13 to Asp13).
tended” rather than “turned”. Correlation of the SAR
trends for the 1,5-naphthalene-based series compared
with a representative nonconstrained peptide, CVFM,
provides further evidence that the biologically active
conformations for both the new series and CVFM are
closely related and are therefore extended. The new
prototypes, particularly members of the 1,6-naphthalene-
based series, demonstrate potent cellular activity against