Edge Article
Chemical Science
Ni(I) species F which is reduced by zinc to facilitate the next
catalytic cycle.
X. Jin, X. Yao, R. Fang and X. Shao, Angew. Chem., Int. Ed.,
2014, 53, 535–538; (c) T. Okamoto, C. Mitsui,
M. Yamagishi, K. Nakahara, J. Soeda, Y. Hirose, K. Miwa,
H. Sato, A. Yamano, T. Matsushita, T. Uemura and
J. Takeya, Adv. Mater., 2013, 25, 6392–6397.
Conclusions
In summary, we have developed a universal reductive thiolation
protocol of organic halides with benzimidazolium sulfon-
amides. This bench-stable crystalline reagent is readily achiev-
able in large quantities from abundant sulfonyl chloride. The
key design of this redox-active reagent is the cationic nature.
The reduction potential of sulfonyl group can be improved due
to the cationic nature and in favor of in situ generating elec-
trophilic N–S+ reagent by the reduction of triphenylphosphine.
This approach features practical conditions, broad substrate
scope, and excellent functional group tolerance for the incor-
poration of sulfur-containing moieties into organic molecules.
Further study of the cationic reagent IMDN-SO2R is underway in
our laboratory.
5 M. Wang, C. H. Wang and X. F. Jiang, Chinese J. Org. Chem.,
2019, 39, 2139–2147.
´
6 (a) S. Otocka, M. Kwiatkowska, L. Madalinska and
´
P. Kiełbasinski, Chem. Rev., 2017, 117, 4147–4181; (b)
M. Mellah, A. Voituriez and E. Schulz, Chem. Rev., 2007,
107, 5133–5209; (c) V. K. Aggarwal and C. L. Winn, Acc.
Chem. Res., 2004, 37, 611–620.
7 (a) C. F. Lee, Y. C. Liu and S. S. Badsara, Chem.–Asian J., 2014,
9, 706–722; (b) C. C. Eichman and J. P. Stambuli, Molecules,
2011, 16, 590–608; (c) I. P. Beletskaya and V. P. Ananikov,
Chem. Rev., 2011, 111, 1596–1636; (d) E. Alvaro and
J. F. Hartwig, J. Am. Chem. Soc., 2009, 131, 7858–7868; (e)
J. F. Hartwig, Acc. Chem. Res., 2008, 41, 1534–1544; (f)
S. V. Ley and A. W. Thomas, Angew. Chem., Int. Ed., 2003,
42, 5400–5449; (g) T. Mitsudo, Chem. Rev., 2000, 100, 3205–
3220.
Conflicts of interest
There are no conicts to declare.
8 (a) N. Velasco, C. Virumbrales, R. Sanz, S. Suarez-Pantiga and
M. A. Fernandez-Rodriguez, Org. Lett., 2018, 20, 2848–2852;
(b) M. Iwasaki, M. Iyanaga, Y. Tsuchiya, Y. Nishimura,
W. Li, Z. Li and Y. Nishihara, Chem.–Asian J., 2014, 20,
Acknowledgements
´
´
Professor Shaolin Zhu is gratefully acknowledged for helpful
discussion. This work was supported by the National Natural
Science Foundation of China (No. 21772085 and 21971107) and
the Fundamental Research Funds for the Central Universities
(No. 020514380220, 020514380131, 020514913412, and
020514913214). We also thank the Collaborative Innovation
Center of Advanced Microstructures and Jiangsu Provincial Key
Laboratory of Photonic and Electronic Materials at Nanjing
University for support.
2459–2462; (c) M. A. Fernandez-Rodrıguez, Q. L. Shen and
J. F. Hartwig, J. Am. Chem. Soc., 2006, 128, 2180–2181; (d)
M. Murata and S. L. Buchwald, Tetrahedron, 2004, 60,
7397–7403.
9 (a) B. Movassagh and Z. Hosseinzadeh, Synlett, 2015, 27,
777–781; (b) C. Uyeda, Y. Tan, G. C. Fu and J. C. Peters, J.
Am. Chem. Soc., 2013, 135, 9548–9552; (c) H. L. Kao and
C. F. Lee, Org. Lett., 2011, 13, 5204–5207; (d) H. Zhang,
W. Cao and D. W. Ma, Synth. Commun., 2007, 37, 25–35; (e)
L. Rout, T. K. Sen and T. Punniyamurthy, Angew. Chem.,
Int. Ed., 2007, 46, 5583–5586; (f) C. G. Bates,
R. K. Gujadhur and D. Venkataraman, Org. Lett., 2002, 4,
2803–2806.
Notes and references
1 (a) N. Wang, P. Saidhareddy and X. F. Jiang, Nat. Prod. Rep.,
2020, 37, 246–275; (b) K. L. Dunbar, D. H. Scharf, A. Litomska 10 (a) K. D. Jones, D. J. Power, D. Bierer, K. M. Gericke and
and C. Hertweck, Chem. Rev., 2017, 117, 5521–5577.
2 (a) R. A. Bragg, S. Brocklehurst, F. Gustafsson, J. Goodman,
K. Hickling, P. A. MacFaul, S. Swallow and J. Tugwood,
Chem. Res. Toxicol., 2015, 28, 1991–1999; (b) F. Y. Zhu,
S. G. Stewart, Org. Lett., 2018, 20, 208–211; (b) S. Jammi,
P. Barua, L. Rout, P. Saha and T. Punniyamurthy,
Tetrahedron Lett., 2008, 49, 1484–1487; (c) Y. Zhang,
K. C. Ngeow and J. Y. Ying, Org. Lett., 2007, 9, 3495–3498.
Y. M. Wang, M. C. He, Z. H. Yan and S. Lin, Chinese J. Org. 11 (a) Z. Tber, M. A. Hiebel, A. El Hakmaoui, M. Akssira,
Chem., 2019, 39, 1175–1180.
G. Guillaumet and S. Berteina-Raboin, RSC Adv., 2016, 6,
72030–72036; (b) V. P. Reddy, A. V. Kumar, K. Swapna and
K. R. Rao, Org. Lett., 2009, 11, 1697–1700; (c) A. Correa,
M. Carril and C. Bolm, Angew. Chem., Int. Ed., 2008, 47,
2880–2883; (d) Y. C. Wong, T. T. Jayanth and C. H. Cheng,
Org. Lett., 2006, 8, 5613–5616.
3 (a) M. H. Feng, B. Q. Tang, H. L. Steven and X. F. Jiang, Curr.
Top. Med. Chem., 2016, 16, 1200–1216; (b) E. A. Ilardi,
E. Vitaku and J. T. Njardarson, J. Med. Chem., 2014, 57,
2832–2842; (c) L. Liu, J. E. Stelmach, S. R. Natarajan,
M. H. Chen, S. B. Singh, C. D. Schwartz, C. E. Fitzgerald,
S. J. O'Keefe, D. M. Zaller, D. M. Schmatz and J. B. Doherty, 12 (a) F. Sandfort, T. Knecht, T. Pinkert, C. G. Daniliuc and
Bioorg. Med. Chem. Lett., 2003, 13, 3979–3982; (d) G. Liu,
J. R. Huth, E. T. Olejniczak, R. Mendoza, P. DeVries,
S. Leitza, E. B. Reilly, G. F. Okasinski, S. W. Fesik and
T. W. von Geldern, J. Med. Chem., 2001, 44, 1202–1210.
4 (a) H. Iino, T. Usui and J. Hanna, Nat. Commun., 2015, 6,
6828; (b) X. Li, Y. Zhu, J. Shao, B. Wang, S. Zhang, Y. Shao,
F. Glorius, J. Am. Chem. Soc., 2020, 142, 6913–6919; (b)
M. Jiang, H. Li, H. Yang and H. Fu, Angew. Chem., Int. Ed.,
2017, 56, 874–879; (c) M. S. Oderinde, M. Frenette,
D. W. Robbins, B. Aquila and J. W. Johannes, J. Am. Chem.
Soc., 2016, 138, 1760–1763.
© 2021 The Author(s). Published by the Royal Society of Chemistry
Chem. Sci., 2021, 12, 2509–2514 | 2513