Communications
of quaternary stereocenters starting from a,a-disubstituted
In summary, a novel class of organocatalysts in the form of
sterically encumbered chiral pyrrolidine derivatives without
additional free heteroatom functionalities has been devel-
oped. These compounds were found to be highly efficient
organocatalysts for the direct enantioselective a sulfenylation
of aldehydes, which is one of the first examples of an
asymmetric intermolecular substitution reaction mediated by
a secondary amine. This procedure constitutes the first
enantioselective catalytic preparation of a-sulfenylated alde-
hydes and, to the best of our knowledge, the first successful
use of electrophilic sulfur sources in asymmetric catalysis. The
optically active products were obtained in high yields with
excellent enantioselectivities and underwent further facile
modifications. Further exploration of the new class of chiral
organocatalysts described are now in progress in our labo-
ratory.
aldehydes, such as 2-phenyl propanal (1g). In this case, the
optically active a-sulfenylated alcohol 5g was obtained in
high yield and with good enantioselectivity when 4e was used
as the catalyst (Table 2, entry 7).
As well as reduction to the a-sulfenylated alcohols 5, the
optically active a-sulfenylated aldehydes 3 also undergo
reductive amination with dibenzylamine and sodium triace-
toxyborohydride. By using this procedure, the chiral a-
sulfenylated amine 6 was obtained directly from the aldehyde
3a with only a minor loss of enantiomeric excess [Eq. (2)].
Moreover, after protection of the hydroxy group as a tert-
butyldimethylsilyl (TBDMS) ether, the benzyl sulfide moiety
could be cleaved reductively with Na/NH3(l). Thus, the free
thiol 8 was formed from 7 in good yield [Eq. (3)]. These
transformations underline the synthetic versatility of optically
active a-sulfenylated aldehydes in the preparation of chiral
sulfur-containing compounds.
Received: September 24, 2004
Keywords: aldehydes · asymmetric catalysis · enantioselectivity ·
.
organocatalysis · sulfenylation
[1] For some recent reviews, see, for example: a) P. I. Dalko, L.
Moisan, Angew. Chem. 2001, 113, 3840; Angew. Chem. Int. Ed.
2001, 40, 3726; b) B. List, Tetrahedron 2002, 58, 5573; c) R. O.
Duthaler, Angew. Chem. 2003, 115, 1005; Angew. Chem. Int. Ed.
2003, 42, 975; d) P. Merino, T. Tejero, Angew. Chem. 2004, 116,
3055; Angew. Chem. Int. Ed. 2004, 43, 2995; e) B. List, Acc.
Chem. Res. 2004, 37, 548; f) W. Notz, F. Tanaka, C. F. Barbas III,
Acc. Chem. Res. 2004, 37, 580; g) P. I. Dalko, L. Moisan, Angew.
Chem. 2004, 116, 5248; Angew. Chem. Int. Ed. 2004, 43, 5138.
[2] a) A. Bøgevig, K. Juhl, N. Kumaragurubaran, W. Zhuang, K. A.
Jørgensen, Angew. Chem. 2002, 114, 1868; Angew. Chem. Int.
Ed. 2002, 41, 1790; b) B. List, J. Am. Chem. Soc. 2002, 124, 5656;
c) H. Vogt, S. Vanderheiden, S. Brꢀse, Chem. Commun. 2003,
2448; d) N. Kumaragurubaran, K. Juhl, W. Zhuang, A. Bøgevig,
K. A. Jørgensen, J. Am. Chem. Soc. 2002, 124, 6254.
[3] a) G. Zhong, Angew. Chem. 2003, 115, 4379; Angew. Chem. Int.
Ed. 2003, 42, 4247; b) S. P. Brown, M. P. Brochu, C. J. Sinz,
D. W. C. MacMillan, J. Am. Chem. Soc. 2003, 125, 10808; c) Y.
Hayashi, J. Yamaguchi, K. Hibino, M. Shoji, Tetrahedron Lett.
2003, 44, 8293; d) A. Cꢁrdova, M. Enqvist, I. Ibrahem, J. Casas, J.
Am. Chem. Soc. 2004, 126, 8914; e) N. Momiyama, H. Torii, S.
Saito, H. Yamamoto, Proc. Natl. Acad. Sci. USA 2004, 101, 5374;
f) W. Wang, J. Wang, H. Lia, L. Liao, Tetrahedron Lett. 2004, 45,
7235; g) A. Bøgevig, H. Sundꢂen, A. Cꢁrdova, Angew. Chem.
2004, 116, 1129; Angew. Chem. Int. Ed. 2004, 43, 1109; h) Y.
Hayashi, J. Yamaguchi, T. Sumaiya, M. Shoji, Angew. Chem.
2004, 116, 1132; Angew. Chem. Int. Ed. 2004, 43, 1112; i) Y.
Hayashi, J. Yamaguchi, T. Sumiya, K. Hibino, M. Shoji, J. Org.
Chem. 2004, 69, 5966; j) A. Cꢁrdova, H. Sundꢂn, A. Bøgevig, M.
Johansson, F. Himo, Chem. Eur. J. 2004, 10, 3673.
The absolute configuration of the optically active a-
sulfenylated alcohols 5a and 5b was determined to be S by
comparison of their optical rotation with values reported in
the literature.[5f,10] This configuration is in agreement with Si-
face attack of the sulfur-centered electrophile on the E-
configured enamine intermediate. The Re face of the enamine
is shielded effectively by the aryl and silyl substituents of the
catalyst 4h. A model for this mode of attack is depicted in
Figure 1.
[4] a) M. P. Brochu, S. P. Brown, D. W. C. MacMillan, J. Am. Chem.
Soc. 2004, 126, 4108; b) N. Halland, A. Braunton, S. Bachmann,
M. Marigo, K. A. Jørgensen, J. Am. Chem. Soc. 2004, 126, 4790;
c) M. Marigo, S. Bachmann, N. Halland, A. Braunton, K. A.
Jørgensen, Angew. Chem. 2004, 116, 5623; Angew. Chem. Int.
Ed. 2004, 43, 5507.
[5] See, for example: a) J.-H. Youn, R. Herrmann, I. Ugi, Synthesis
1987, 158; b) G. Poli, L. Belvisi, L. Manzoni, C. Scolastico, J. Org.
Chem. 1993, 58, 3165; c) D. Enders, T. Schꢀfer, O. Piva, A.
Zamponi, Tetrahedron 1994, 50, 3349; d) K. Chibale, S. Warren,
Tetrahedron Lett. 1994, 35, 3991; e) D. Enders, T. Schꢀfer, W.
Figure 1. Postulated Si-face attack of the electrophile on the E enamine
formed from isovaleraldehyde (1a) and catalyst 4h.
796
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 794 –797