3716
Inorg. Chem. 1996, 35, 3716-3718
performance liquid chromatography (HPLC) with a multiwave-
length detector.
Synthesis and Single-Crystal X-ray Investigation
of 4-Azido-2-(triphenylphosphinimino)-3,5,6-
trifluorobenzonitrile: A Chromogenic Nitrene
Precursor for Photolabeling
A second goal is to introduce bifunctional character to the
photoprobe by attaching chelating agents for the incorporation
of transition metals. Ligands with phosphorus-nitrogen back-
bones are of particular interest by virtue of their chelation
potential with a variety of transition metals (e.g., Pd, Re, Rh,
etc.), the parallel radioisotopes of which are useful in radiop-
harmaceuticals.17 In continuation of our earlier studies on the
development of photolabeling agents,18-23 we report here the
synthesis and single crystal X-ray structure of 4-azido-2-
(triphenylphosphinimino)-3,5,6-trifluorobenzonitrile, 2, a chro-
mogenic nitrene precursor, and the complexation of 2 with
Pd(II). The fundamental coordination properties of the Pd(II)
complex system can be extended to the corresponding analogues
with 109Pd, a â-emitting therapeutic radionuclide for use in
radioimmunotherapy.
Raghoottama S. Pandurangi,† Kattesh V. Katti,§
Robert R. Kuntz,*,† Charles L. Barnes,† and
Wynn A. Volkert‡,§
Department of Chemistry, University of Missouri, Columbia,
Missouri 65211, H. S. Truman VA Hospital, Columbia,
Missouri 65211, and Center for Radiological Research and
MU Research Reactor, Alton Building Laboratories,
301 Business Loop 70 W, Columbia, Missouri 65302
ReceiVed August 2, 1995
Introduction
Experimental Section
Development of new photolabeling agents with improved
photochemical properties has been a long sought goal for
molecular biologists and chemists.1-9 The minimum charac-
teristics for a UV-activated photolabeling agent include high
quantum efficiencies for forming the reactive precursor and high
reactivity for insertion into unactivated bonds.10,11 Although
perfluoro azides are projected to be potential photolabeling
agents,12-14 most require photoactivation in the spectral region
where proteins and nucleic acids15 also absorb light.
One goal of our work is to develop chromogenic photore-
active nitrene precursor that can be activated by irradiation at
wavelengths beyond the protein absorption tail (i.e., λmax > 320
nm) since photolysis at these wavelengths preclude the pos-
sibility of denaturing of proteins by radiation16 and can
compensate for a lower quantum yield of the photoprobe. The
spectral separation of the photoprobe and its photolysis products
from the absorption region of the biomolecule also provides a
spectral handle for monitoring and separating the photolabeled
biomolecules from the nonlabeled products using high-
All reactions and other manipulations were carried out under an
atmosphere of dry nitrogen or under vacuum. Solvents were prepu-
rified, dried and distilled under nitrogen prior to use. 1H, 31P, and 19
F
NMR spectra were recorded on a Bruker WH-300 instrument for
samples in CDCl3 solvent. 1H NMR chemical shifts are reported in
ppm, downfield from external standard, SiMe4. The 31P NMR chemical
shifts are reported with respect to 85% H3PO4 as an external standard
and for 19F NMR, trifluorotoluene is used as an external standard.
Reagents such as PdCl2(PhCN)2 and perfluorobenzonitrile were pur-
chased from Aldrich Chemical Co. All elemental analysis were done
by Oneida Research Services, Inc., Whitesboro, NY. FTIR spectra were
taken in a Mattson Galaxy 3000 spectrophotometer instrument using a
Nujol mull.
Synthesis of 4-Azido-2-(triphenylphosphinimino)-3,5,6-trifluo-
robenzonitrile, 2. A two-necked flask, equipped with a nitrogen inlet
adapter and an addition funnel was charged with dry methylene chloride
(100 mL) and 4-azido-2,3,4,5-tetrafluorobenzonitrile, 1 (5 g, 21.3
mmol). A solution of (trimethylsilyl)triphenylphosphinimine R3PNT
(R ) Ph and T ) (CH3)3Si, 8.17 g, 23.4 mmol), prepared by refluxing
triphenylphosphine with trimethylsilyl azide,24 was slowly added
dropwise at 0 °C and stirred for an hour during which the reaction was
monitored by 31P NMR spectroscopy. The solvent was evaporated
under the atmosphere of nitrogen and the solid was redissolved in dry
acetonitrile and evaporated slowly to give yellow crystals 2 in 90%
yield. mp: 126 °C. Anal. Calcd for C25H15N5F3P: C, 63.43, H, 3.19,
N, 14.79, Found: C, 63.23, H, 3.41, N, 14.83. 1H NMR: δ 7.0-8.0
(m, 15H, aromatic protons). 31P NMR: δ 9.8(s). 19F NMR: δ -73.6
(m, 1F), -74.6 (m, 1F and -99.4 (m, 1F) IR: 2250, 2122, 1628, 1377,
1258, 1200, 1109, 1045, 719, 525 cm-1 UV: 260 nm (ꢀ )15 340 M-1
cm-1), 348 nm. (ꢀ )1632 M-1 cm-1).
* To whom correspondence to be addressed.
† University of Missouri.
‡ H. S. Truman VA Hospital.
§ Alton Building Laboratories.
(1) Brunner, J. Annu. ReV. Biochem. 1993, 62, 4893 and references therein.
(2) Chavan, A. J.; Richardson, S. K.; Kim, H., Haley, E. B.; Watt, D. S.
Bioconjugate Chem. 1993, 4, 268.
(3) Kerwin, B. A.; Yount, R. G. Bioconjugate Chem. 1992, 3, 328.
(4) Rogers, G. A.; Parsons, S. M.; Biochemistry 1992, 31, 5770.
(5) Cavalla, D.; Neff, N. H. Biochem. Pharmacol. 1985, 34, 2821.
(6) Haley, B. E. Methods Enzymol. 1991, 200, 477.
(7) Bayley, H.; Staros, J. W. Photoaffinity and Related Techniques. In
Azides and Nitrenes, ReactiVity and Techniques Scriver, E. F. V., Ed.;
Academic Press: New York, 1984; Chapter 9, p 433.
(8) Bayley, H. Reagents for Photoaffinity Labeling. In Photogenerated
Reagents in Biochemistry and Molecular Biology; Work T. S., Burdon,
R. H., Eds.; Elsevier: Amsterdam, 1983.
(9) Pinney, K. G.; Carlson, K. E.; Katzenellenbogen, B. S.; Katzenellen-
bogen, J. A. J. Biochem. 1991, 30, 2421.
(10) Schuster, G. B. In Photochemical Probes in Biochemistry; Neilson,
P. E., Ed.; NATO ASI Series C, No. 272; Kluwer/Academic:
Dordrecht, The Netherlands, 1989; pp 31-41.
(11) Schuster, D. I.; Probst, W. C.; Ehrilich, G. K.; Singh, A. Photochem.
Photobiol. 1984, 49, 785.
Synthesis of [4-Azido-2-triphenylphosphinimino-3,5,6-trifluo-
robenzonitrile-PdCl2], 3. A solution of the PdCl2(PhCN)2 precursor
(17) (a) Nicot, B. D.; Mathiew, R.; Montauzon, D. D.; Lavigne, G.; Majoral,
J. P. Inorg. Chem. 1994, 33, 434, (b) Katti, K. V.; Reddy, V. S.; Slingh,
P. R. Chem. Soc. ReV. 1995, 97 and references therein, (c) Mague, J.
T. Inorg. Chem. 1994, 31, 4261, (d) Derringer, D. R.; Fanwick, P. E.;
Moran, T; Walton, R. A. Inorg. Chem. 1989, 28, 1384.
(18) Pandurangi, R. S.; Karra, S. R.; Kuntz, R. R.; Volkert, W. A.
Bioconjugate Chem. 1995, 6, 630.
(19) Pandurangi, R. S.; Kuntz, R. R.; Volkert, W. A.; Barnes, C. L.; Katti,
K. V. J. Chem. Soc., Dalton Trans. 1995, 565.
(20) Pandurangi, R. S.; Katti, K. V.; Barnes, C. L.; Volkert, W. A.; Kuntz,
R. R. J. Chem. Soc. Chem., Commun. 1994, 1841.
(12) Soundarajan, J.; Platz, M. S. J. Org. Chem. 1990, 55, 2034.
(13) Keana, J. F. W.; Cai, S. X. J. Org. Chem. 1990, 55, 3640.
(14) Cai, S. X.; Glenn, D. J.; Keana, J. F. W. J. Org. Chem. 1992, 57,
1299.
(21) Pandurangi, R. S.; Katti, K. V.; Volkert, W. A.; Kuntz, R. R.
Proceedings, International Conference on Photochemistry; Vancouver,
Canada Proceedings 1993; p 367.
(15) Marquet, J.; Rabecas, L.; Cantos, A.; Manas, M. M.; Cervera, M.;
Casado, F.; Nogues, M. V.; Cuchillo, C. M. Tetrahedron 1993, 49,
1297.
(16) Sorenson, P; Farber, N. M; and Krystal, G. J. Biol. Chem. 1986, 26,
9094.
(22) Pandurangi, R. S.; Kuntz, R. R.; and Volkert, W. A. Int. J. Appl. Radiat.
Isot. 1995, 46, 233.
(23) Pandurangi, R. S., Karra, S. R., Katti, K. V., Kuntz, R. R.; Volkert,
W. A. J. Org. Chem., in press.
(24) Birkhofer, L.; Ritter, A.; Ritcher, P. Chem. Ber. 1963, 96, 2750.
S0020-1669(95)01002-0 CCC: $12.00 © 1996 American Chemical Society