E
T. Pieterse et al.
Letter
Synlett
(2) (a) Blakemore, P. R. J. Chem. Soc., Perkin Trans. 1 2002, 2563.
(b) Dumeunier, R.; Marko, I. E. In Modern Carbonyl Olefination;
Takeda, T., Ed.; Wiley-VCH: Weinheim, 2004, 104–150.
(c) Pospisil, J.; Pospisil, T.; Marko, I. E. Org. Lett. 2005, 7, 2373.
(d) Christophe, A. Eur. J. Org. Chem. 2009, 1831. (e) Wu, F.-L.;
Hussein, W. M.; Ross, B. P.; McGeary, R. P. Curr. Org. Chem. 2012,
16, 1555. (f) Chatterjee, B.; Bera, S.; Mondal, D. Tetrahedron:
Asymmetry 2014, 25, 1. (g) Pfund, E.; Lequeux, T.; Gueyrard, D.
Synthesis 2015, 47, 1534.
(3) (a) Ager, D. J. Org. React. 1990, 38, 1. (b) Barrett, A. G. M.; Hill, J.
M.; Wallace, E. M.; Flygare, J. A. Synlett 1991, 764. (c) Van
Staden, L. F.; Gravestock, D.; Ager, D. J. Chem. Soc. Rev. 2002, 31,
195. (d) Kano, N.; Kawashima, T. In Modern Carbonyl Olefina-
tion; Takeda, T., Ed.; Wiley-VCH: Weinheim, 2004, 18–103.
(e) Ager, D. J. Science of Synthesis: Houben–Weyl Methods of
Molecular Transformations; Vol. 47a; de Meijere, A., Ed.; Georg
Thieme: Stuttgart, 2010, 85–104.
(4) Lu, X.; Fang, H.; Ni, Z. J. Organomet. Chem. 1989, 373, 77.
(5) (a) Herrmann, W. A.; Roesky, P. W.; Wang, M.; Scherer, W.
Organometallics 1994, 13, 4531. (b) Ledford, B. E.; Carreira, E. M.
Tetrahedron Lett. 1997, 38, 8125. (c) Santos, A. M.; Romao, C. C.;
Kühn, F. E. J. Am. Chem. Soc. 2003, 125, 2414. (d) Zhang, X.; Chen,
P. Chem. Eur. J. 2003, 9, 1852. (e) Harrison, R.; Mete, A.; Wilson,
L. Tetrahedron Lett. 2003, 44, 6621. (f) Santos, A.; Pedro, F. M.;
Yogalekar, A. A.; Lucas, I. S.; Romão, C. C.; Kühn, F. E. Chem. Eur. J.
2004, 10, 6313. (g) Pedro, F. M.; Hirner, S.; Kühn, F. E. Tetrahe-
dron Lett. 2005, 46, 7777.
(6) (a) Mirfazal, G. A.; Cheng, G.; Woo, L. K. J. Am. Chem. Soc. 2002,
124, 176. (b) Aggarwal, V. K.; Fulton, J. R.; Sheldon, C. G.; De
Vicente, J. J. Am. Chem. Soc. 2003, 125, 6034. (c) Chen, Y.; Huang,
L.; Zhang, X. P. J. Org. Chem. 2003, 68, 5925. (d) Cheng, Y.;
Huang, L.; Zhang, X. P. Org. Lett. 2003, 5, 2493. (e) Sharma, V. B.;
Jain, S. L.; Sain, B. Catal. Lett. 2004, 98, 141.
(15) (a) Imamoto, T.; Takiyama, N.; Nakamura, K. Tetrahedron Lett.
1985, 26, 4763. (b) Imamoto, T.; Sugiuta, Y.; Takiyama, N. Tetra-
hedron Lett. 1984, 25, 4233. (c) Imamoto, T.; Takiyama, N.;
Nakamura, K.; Hatajima, T.; Kamiya, Y. J. Am. Chem. Soc. 1989,
111, 4392. (d) Ashby, E. C.; Noding, S. A. J. Org. Chem. 1979, 44,
4371. (e) Richery, H. G. Jr.; DeStephano, J. P. J. Org. Chem. 1990,
55, 3281. (f) Krasovsiy, A.; Knochel, P. Angew. Chem. Int. Ed.
2004, 43, 3333. (g) Ipaktschi, J.; Eckert, T. Chem. Ber. 1995, 128,
1171. (h) Schneiper, B.; Bonnekessel, M.; Krause, H.; Fürstner, A.
J. Org. Chem. 2004, 69, 3943. (i) Fürstner, A.; Krause, H.;
Lehmann, C. W. Angew. Chem. Int. Ed. 2006, 45, 440.
(j) Krasovskiy, A.; Kopp, F.; Knochel, P. Angew. Chem. Int. Ed.
2006, 45, 497. (k) Hatano, M.; Suzuki, S.; Ishihara, K. J. Am.
Chem. Soc. 2006, 128, 9998.
(16) (a) Gohain, M.; Marais, C.; Bezuidenhoudt, B. C. B. Tetrahedron
Lett. 2012, 53, 1048. (b) Gohain, M.; Marais, C.; Bezuidenhoudt,
B. C. B. Tetrahedron Lett. 2012, 53, 4704. (c) Gohain, M.; Jacobs,
J.; Marais, C.; Bezuidenhoudt, B. C. B. Aust. J. Chem. 2013, 66,
1594. (d) Gohain, M.; Lin, S.; Bezuidenhoudt, B. C. B. Tetrahedron
Lett. 2015, 56, 2579.
(17) General Procedure: A solution of carbonyl compound in anhy-
drous CH2Cl2 (2–5 mL) was cooled to –30 °C. Al(OTf)3 (1.0 equiv)
was added and the reaction mixture was stirred at –30 °C for
30 min under Ar. Grignard reagent (3.0 M in Et2O, 2.0 equiv) was
subsequently added and the reaction mixture was allowed to
warm to r.t. while being stirred. Once the reaction was deemed
complete (TLC analysis), the reaction mixture was neutralised
with aq NH4Cl and the product was extracted into EtOAc (3 × 50
mL). The organic layer was dried over Na2SO4, filtered and evap-
orated under reduced pressure. Purification by prep. TLC gave
the corresponding alkenes or alcohols (Table 1).
(Z)-2,4-Dimethoxy-α,β-dimethylstyrene (16): The general
procedure with 2′,4′-dimethoxyacetophenone (3; 0.217 g, 1.22
mmol) and Al(OTf)3 (0.531 g, 1.12 mmol, 0.9 equiv) in CH2Cl2 (5
mL) and ethylmagnesium bromide (3 M, 0.7 mL, 1.7 equiv)
yielded 16 (0.107 g, 46%) as a colourless oil. Rf = 0.61 (hexane–
acetone, 8:2). 1H NMR (600 MHz, CDCl3): δ = 7.06 (d, J = 8.2 Hz,
1 H, H-6), 6.48 (d, J = 2.4 Hz, 1 H, H-3), 6.46 (dd, J = 8.2, 2.4 Hz,
1 H, H-5), 5.55 (qq, J = 6.7, 1.3 Hz, 1 H, H-β), 3.83 (s, 6 H, OMe),
2.00–1.98 (m, 3 H, α-CH3), 1.80–1.78 (m, 3 H, β-CH3). 13C NMR
(151 MHz, CDCl3): δ = 159.8 (C-2/4), 157.6 (C-2/4), 135.3 (C-
1/α), 130.0 (C-6), 128.1 (C-1/α), 123.5 (C-β), 103.9 (C-5), 98.7
(C-3), 55.4 (-OMe), 17.0 (α-CH3), 14.0 (β-CH3). MS (EI, 70 eV):
m/z (%) = 192.1 (100) [M]+. HRMS (AP+): m/z = 193.1233 [MH]+.
(18) Chemical shift of the residual β-proton in the E-isomer of aryl
substituted 2-butenes of δ = 5.78 and 5.90 ppm vs. δ = 5.52–
5.58 ppm for the Z-isomer.20 Chemical shift of the residual β-
proton in the E-isomer of methyl substituted stilbenes was δ =
6.78 and 6.81 vs. δ ≈ 6.32 ppm for the Z-isomer.21
(7) (a) Fujimura, O.; Honma, T. Tetrahedron Lett. 1998, 39, 625.
(b) Graban, E.; Lemke, F. R. Organometallics 2002, 21, 3823.
(c) Sun, W.; Yu, B.; Kühn, F. E. Tetrahedron Lett. 2006, 47, 1993.
(d) Pedro, F. M.; Santos, A. M.; Baratta, W.; Kühn, F. E. Organo-
metallics 2007, 26, 302.
(8) Lee, M.-Y.; Cheng, Y.; Zhang, X. P. Organometallics 2003, 22,
4905.
(9) (a) Lebel, H.; Paquet, V.; Proulx, C. Angew. Chem. Int. Ed. 2001,
40, 2887. (b) Grasa, G. A.; Moore, Z.; Martin, K. L.; Stevens, E. D.;
Nolan, S. P.; Paquet, V.; Lebel, H. J. Organomet. Chem. 2002, 658,
126. (c) Lebel, H.; Paquet, V. Org. Lett. 2002, 4, 1671. (d) Lebel,
H.; Paquet, V. J. Am. Chem. Soc. 2004, 126, 320.
(10) Lebel, H.; Davi, M.; Diez-Gonzalez, S.; Nolan, S. P. J. Org. Chem.
2007, 72, 144.
(11) Lebel, H.; Ladjel, C. Organometallics 2008, 27, 2676.
(12) (a) Ng, D. K. P.; Luh, T.-Y. J. Am. Chem. Soc. 1989, 111, 9119.
(b) Ni, Z.-J.; Mei, N.-W.; Shi, X.; Tzeng, Y.-L.; Wang, M. C.; Luh, T.-
Y. J. Org. Chem. 1991, 56, 4035. (c) Cheng, W.-L.; Luh, T.-Y. J. Org.
Chem. 1992, 57, 3516.
(13) Wang, T.; Hu, Y.; Zhang, T. Org. Biomol. Chem. 2010, 8, 2312.
(14) (a) Perlmutter, P. Conjugate Addition Reactions in Organic Syn-
thesis; Pergamon Press: Oxford, 1992, 41. (b) Van Heerden, P. S.;
Bezuidenhoudt, B. C. B.; Ferreira, D. Tetrahedron Lett. 1997, 38,
1821. (c) Nakamura, E.; Matsuzawa, S.; Horiguchi, Y.; Kuwajima,
I. Tetrahedron Lett. 1986, 27, 4029. (d) Reetz, M. T.; Hullmann,
M.; Massa, W.; Berger, S.; Rademacher, P.; Heymanns, P. J. Am.
Chem. Soc. 1986, 108, 2405. (e) Lipshutz, B. H. Synthesis 1987,
325. (f) Corey, E. J.; Boaz, N. W. Tetrahedron Lett. 1985, 26, 6015.
(g) Corey, E. J.; Boaz, N. W. Tetrahedron Lett. 1985, 26, 6019.
(19) NMR analysis of the crude product mixture before work-up
indicated that the olefin was the major product.
(20) (a) Yuan, D.-Y.; Tu, Y.-Q.; Fan, C.-A. J. Org. Chem. 2008, 73, 7797.
(b) Yanagisawa, A.; Nezu, T.; Mohri, S. Org. Lett. 2009, 11, 5286.
(c) Nave, S.; Sonawane, R. P.; Elford, T. G.; Aggarwal, V. K. J. Am.
Chem. Soc. 2010, 132, 17096.
(21) (a) Zhu, G.; Kong, W.; Feng, H.; Qian, Z. J. Org. Chem. 2014, 79,
1786. (b) Liu, G.; Kong, L.; Shen, J.; Zhu, G. Org. Biomol. Chem.
2014, 12, 2310. (c) McLaughlin, M. G.; McAdam, C. A.; Cook, M. J.
Org. Lett. 2015, 17, 10.
(22) Nakao, Y.; Imanaka, H.; Chen, J.; Yada, A.; Hiyama, T. J. Organomet.
Chem. 2007, 692, 585.
(23) Cole, J. G.; Wan, P. Can. J. Chem. 2002, 80, 46.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, A–F