Protonation of Metal Hydrides by Strong Acids
Organometallics, Vol. 15, No. 10, 1996 2511
was recently structurally characterized by neutron
diffraction.39 Spectroscopic data were recently pub-
lished40 for intermolecular ROH‚‚‚H-M interactions
between acidic alcohols and tungsten hydrides.
resonance of cis-Cp*Re(CO)2(H)(D) appears 0.056 ppm
upfield of the dihydride resonance of cis-Cp*Re(CO)2-
(H)2.7
In an NMR spectrum recorded at -80 °C following
addition of DOTf to a CD2Cl2 solution of Cp*Os(CO)2H,
the resonance due to [Cp*Os(CO)2(H)2]+OTf- at
δ -10.006 exhibited a shoulder at δ -9.987. This
additional resonance is assigned to [Cp*Os(CO)2(H)-
(D)]+OTf-, indicating an unusual downfield shift of
0.019 ppm upon partial deuteration. This resonance
assigned to the Os(H)(D) complex was not well-resolved
but was reproducible. Precedent for a downfield shift
of a dihydride in equilibrium with its dihydrogen
tautomer comes from Heinekey’s report15 of a downfield
shift of 0.027 ppm upon partial deuteration of [Cp*Re-
(CO)(NO)(H)2]+, which was shown to be in equilibrium
with [Cp*Re(CO)(NO)(η2-H2)]+. In both of these cases
the resonance for the dihydrogen ligand is downfield of
that due to the dihydride. Downfield shifts upon partial
deuteration have also been reported for Os(PTol3)3(H)4,46
(tBu3SiO)4Ta2(H)4,47 cis-IrH(η2-H2)Cl2(PiPr3)2,48 and
IrH4[HB(3,5-Me2pz)3].49
In addition to the hydrogen bonding of the W-H bond
to the fluorines on the triflate, the crystal structure also
indicates the existence of weak C-H‚‚‚O hydrogen
bonds,41 where the oxygens atoms of the triflate behave
as hydrogen bond acceptors. Each of the five hydrogens
on the Cp ring are hydrogen bonded to an oxygen of a
triflate. The C‚‚‚O distances range from 3.246 to 3.497
Å; C-H‚‚‚O angles range from 138 to 154°. These
distances and angles are in the range found for other
C-H‚‚‚O hydrogen-bonding interactions. Although each
of these individual hydrogen bonds is weak, collectively
they can have a substantial impact on the overall crystal
structure. The influence of hydrogen bonding in orga-
nometallic complexes has been recognized recently, and
insightful analyses of the impact of C-H‚‚‚O hydrogen
bonding interactions on the crystal structures of orga-
nometallic complexes have been reported.42
Isotop ic Effects on th e Ch em ica l Sh ifts of P a r -
tia lly Deu ter a ted Dih yd r id es. We previously noted3b
that the hydride resonance of [CpW(CO)3(H)(D)]+OTf-
appears at δ -2.12, indicating an upfield shift of 0.05
ppm upon partial deuteration of the dihydride [CpW(C-
O)3(H)2]+OTf- (δ -2.07). Protonation of CpW(CO)2(P-
Me3)H by DOTf gives [CpW(CO)2(PMe3)(H)(D)]+OTf-,
which exhibits a doublet (δ -2.541, J PH ) 38 Hz) at 25
°C. This resonance is 0.062 ppm upfield of the doublet
for [CpW(CO)2(PMe3)(H)2]+OTf- (δ -2.479). The mag-
nitude of the isotope effects on the chemical shift, as
well as the sign (upfield upon partial deuteration) that
we find for these W hydrides, is similar to examples
reported for a series of other dihydrides and polyhy-
drides. Crabtree and co-workers reported isotope effects
on chemical shifts for partial deuteration of a large
series of Re polyhydride complexes; upfield shifts of
0.002-0.03 ppm for each deuterium were typically
observed.43 Heinekey and co-workers found upfield
shifts of up to 0.075 ppm upon partial deuteration of
[Cp*Ir(PPh3)(H)3]+.44 The trihydride complex CpRu-
(PPh3)(H)3 exhibits an upfield isotope shift of 0.023 ppm
upon substitution of one H by D,45 and the hydride
Isotope effects on chemical shift50 caused by geminal
substitution of H for D on a metal are normally <0.1
ppm. Much larger changes in chemical shift can be
observed in cases where isotopic perturbation of reso-
nance occurs, in which there is a nonstatistical occupa-
tion of D vs H in chemically distinct sites. Partial
deuteration of complexes containing both hydride and
dihydrogen ligands24,51 or dihydrides with chemically
inequivalent hydride sites52,53 can lead to observed
chemical shift changes in the range of 0.2 ppm or
greater due to isotopic perturbation of resonance.
Dep en d en ce of th e NMR Ch em ica l Sh ift of HOTf
on Con cen tr a tion a n d Tem p er a tu r e. NMR spectra
in our experiments show resonances due to HOTf, in
addition to the resonances due to the organometallic
hydride complexes discussed above. The solutions of
partially protonated Cp*Os(CO)2H exhibited NMR reso-
nances at -80 °C for HOTf at δ 12.24 and 17.09, both
of which were somewhat broadened singlets (ω1/2 ≈ 16
Hz). As further additions of HOTf were made, the
relative integrations of the δ 12.24:δ 17.09 resonances
remained constant at 75((3):25((3). The acid reso-
nances changed their chemical shift and broadened
when a sufficient excess HOTf had been added to
(36) (a) Peris, E.; Lee, J . C., J r.; Crabtree, R. H. J . Chem. Soc., Chem.
Commun. 1994, 2573. (b) Lee, J . C., J r.; Peris, E.; Rheingold, A. L.;
Crabtree, R. H. J . Am. Chem. Soc. 1994, 116, 11014-11019. (c) Peris,
E.; Lee, J . C., J r.; Rambo, J . R.; Eisenstein, O.; Crabtree, R. H. J . Am.
Chem. Soc. 1995, 117, 3485-3491.
(37) (a) Park, S.; Ramachandran, R.; Lough, A. J .; Morris, R. H. J .
Chem. Soc., Chem. Commun. 1994, 2201-2202. (b) Lough, A. J .; Park,
S.; Ramachandran, R.; Morris, R. H. J . Am. Chem. Soc. 1994, 116,
8356-8357.
(38) Peris, E.; Wessel, J .; Patel, B. P.; Crabtree, R. H. J . Chem. Soc.,
Chem. Commun. 1995, 2175-2176.
(39) Wessel, J .; Lee, J . C., J r.; Peris, E.; Yap, G. P. A.; Fortin, J . B.;
Ricci, J . S.; Sini, G.; Albinati, A.; Koetzle, T. F.; Eisenstein, O.;
Rheingold, A. L.; Crabtree, R. H. Angew. Chem., Int. Ed. Engl. 1995,
34, 2507-2509.
(40) Shubina, E. S.; Belkova, N. V.; Krylov, A. N.; Voronstov, E. V.;
Epstein, L. M.; Gusev, D. G.; Niedermann, M.; Berke, H. J . Am. Chem.
Soc. 1996, 118, 1105-1112.
(41) For leading references on C-H‚‚‚O hydrogen bonds, see: (a)
Taylor, R.; Kennard, O. J . Am. Chem. Soc. 1982, 104, 5063-5070. (b)
Desiraju, G. R. Acc. Chem. Res. 1991, 24, 290-296. (c) Steiner, T.;
Saenger, W. J . Am. Chem. Soc. 1992, 114, 10146-10154. (d) Steiner,
T.; Saenger, W. J . Am. Chem. Soc. 1993, 115, 4540-4547.
(42) (a) Braga, D.; Grepioni, F.; Sabatino, P.; Desiraju, G. R.
Organometallics 1994, 13, 3532-3543. (b) Braga, D.; Grepioni, F.;
Biradha, K.; Pedireddi, V. R.; Desiraju, G. R. J . Am. Chem. Soc. 1995,
117, 3156-3166. (c) Braga, D.; Grepioni, F. Acc. Chem. Res. 1994, 27,
51-56.
(43) (a) Hamilton, D. G.; Luo, X.-L.; Crabtree, R. H. Inorg. Chem.
1989, 28, 3198-3203. (b) Luo, X.-L.; Crabtree, R. H. J . Am. Chem.
Soc. 1990, 112, 4813-4821. (c) Luo, X.-L.; Michos, D.; Crabtree, R. H.
Organometallics 1992, 11, 237-241.
(44) Heinekey, D. M.; Millar, J . M.; Koetzle, T. F.; Payne, N. G.;
Zilm, K. W. J . Am. Chem. Soc. 1990, 112, 909-919.
(45) Baird, G. J .; Davies, S. G.; Moon, S. D.; Simpson, S. J .; J ones,
R. H. J . Chem. Soc., Dalton Trans. 1985, 1479-1486.
(46) Desrosiers, P. J .; Cai, L.; Lin, Z.; Richards, R.; Halpern, J . J .
Am. Chem. Soc. 1991, 113, 4173-4184.
(47) Miller, R. L.; Toreki, R.; LaPointe, R. E.; Wolczanski, P. T.; Van
Duyne, G. D.; Roe, D. C. J . Am. Chem. Soc. 1993, 115, 5570-5588.
(48) Albinati, A.; Bakhmutov, V. I.; Caulton, K. G.; Clot, E.; Eckert,
J .; Eisenstein, O.; Gusev, D. G.; Grushin, V. V.; Hauger, B. E.; Klooster,
W. T.; Koetzle, T. F.; McMullan, R. K.; O’Loughlin, T. J .; Pe´lissier, M.;
Ricci, J . S.; Sigalas, M. P.; Vymenits, A. B. J . Am. Chem. Soc. 1993,
115, 7300-7312.
(49) Paneque, M.; Poveda, M.; Taboada, S. J . Am. Chem. Soc. 1994,
116, 4519-4520.
(50) Hansen, P. E. Annu. Rep. NMR Spectrosc. 1983, 15, 105-234.
(51) Heinekey, D. M.; Oldham, W. J ., J r. J . Am. Chem. Soc. 1994,
116, 3137-3138.
(52) Bianchini, C.; Laschi, F.; Peruzzini, M.; Ottaviani, F. M.; Vacca,
A.; Zanello, P. Inorg. Chem. 1990, 29, 3394-3402.
(53) Heinekey, D. M.; Liegeois, A.; van Roon, M. J . Am. Chem. Soc.
1994, 116, 8388-8389.