T. Murahashi, H. Kurosawa / Journal of Organometallic Chemistry 574 (1999) 142–147
147
B (d) S-E. Bouaoud, P. Braustein, D. Gradjean, D. Matt, D.
Nobel, J. Chem. Soc. Chem. Commun. (1987) 488. (e) Y. Ito, M.
Nakatsuka, N. Kise, T. Saegusa, Tetrahedron Lett. 21 (1980)
2873. Type C (f) N. Yoshimura, S.-I. Murahashi, I. Moritani, J.
Organomet. Chem. 52 (1973) C58.
total of 5855 reflections was collected (I\3|(I)). The
linear absorption coefficient, v, for Mo–Kh radiation
was 12.66 cm−l. The data were corrected for Lorenz
and polarization effects.
[4] All three co-ordination modes were also found in the i-dicar-
bonyl anion (RC(O)CHC(O)R%)–palladium complexes. S.
Kawaguchi, in: H. Yaozeng, A. Yamamoto, B.-K. Teo (Eds.),
New Frontiers in Organometallic and Inorganic Chemistry, Sci-
ence Press, Beijing, 1984, p. 101.
Crystal data for 2·CHCl3: Pd2C41H36Cl4P2O, M=
961.29, monoclinic, space group P2l/c (No. 14), a=
˚
14.581(3),
b=15.724(3),
c=18.458(3)
A,
3
˚
i=107.33(1)°, U=4039(1) A , Z=2, Dcalc. =1.581 g
cm−3, F(000)=1920, v(Mo–Kh)=12.66 cm−l, 652
variables refined with 5855 reflections collected with
I\3|(I) to R=0.050, Rw=0.039. Atomic co-ordi-
nates are listed in Table 2.
[5] (a) J. Ahman, J.P. Wolfe, M.V. Troutman, M. Palucki, S.L.
Buchwald, J. Am. Chem. Soc. 120 (1998) 1918. (b) M. Palucki,
S.L. Buchwald, J. Am. Chem. Soc. 119 (1997) 11108. (c) B.
Hamann, J.F. Hartwig, J. Am. Chem. Soc. 119 (1997) 12382. (d)
H. Muratake, A. Hayakawa, M. Natsume, Tetrahedron Lett. 38
(1997) 7577. (e) H. Muratake, M. Natsume, Tetrahedron Lett.
38 (1997) 7581. (f) A. Satoh, Y. Kawamura, M. Miura, M.
Nomura, Angew. Chem. Int. Ed. Engl. 36 (1997) 1740. (g) M.
Sodeoka, K. Ohrai, M. Shibasaki, J. Org. Chem. 60 (1995) 2648.
(h) J. Nokami, T. Mandai, H. Watanabe, H. Ohyama, J. Tsuji,
J. Am. Chem. Soc. 111 (1989) 4126. (i) J. Tsuji, I. Minami, Acc.
Chem. Res. 20 (1987) 140. (j) Y. Ito, H. Aoyama, T. Saegusa, J.
Am. Chem. Soc. 102 (1980) 4519. (k) Y. Ito, H. Aoyama, T.
Hirao, A. Mochizuki, T. Saegusa, J. Am. Chem. Soc. 101 (1979)
496. (l) Y. Ito, T. Hirao, T. Saegusa, J. Org. Chem. 43 (1978)
1011.
Acknowledgements
Partial support of this work through Grant-in-Aid
for Scientific Research, Ministry of Education, Science
and Culture, and CREST of Japan Science and Tech-
nology Corporation is gratefully acknowledged. T.M.
acknowledges the JSPS research fellowships for young
scientists. Thanks are also due to the Analytical Center,
Faculty of Engineering, Osaka University for the use of
NMR facilities.
[6] For example, H. van der Heijden, B. Hessen, A.G. Orpen, J.
Am. Chem. Soc. 120 (1998) 1112, and references therein.
[7] T. Murahashi, H. Kurosawa, N. Kanehisa, Y. Kai, J.
Organomet. Chem. 530 (1997) 187.
[8] T. Murahashi, N. Kanehisa, Y. Kai, T. Otani, H. Kurosawa, J.
Chem. Soc. Chem. Commun. (1996) 825.
[9] M. Akita, A. Kondoh, T. Kawahara, T. Takagi, Y. Moro-oka,
Organometallics 7 (1988) 366.
References
[1] C.H. Heathcock, in: B.M. Trost (Ed.), Comprehensive Organic
Synthesis, vol. 2, Pergamon, New York, 1991, Chaps. 1.5 and
1.6.
[2] J.G. Stack, J.J. Doney, R.G. Bergman, C.H. Heathcock,
Organometallics 9 (1990) 453.
[3] Type A (a) P. Veya, C. Floriani, A. Chiesi-Villa, C. Rizzori,
Organometallics 12 (1993) 4899. (b) E.R. Burkhardt, R.G.
Bergman, C.H. Heathcock, Organometallics 9 (1990) 30. (c)
R.A. Wanat, D.B. Collum, Organometallics 5 (1986) 120. Type
[10] T. Murahashi, T. Otani, E. Mochizuki, Y. Kai, H. Kurosawa, S.
Sakaki, J. Am. Chem. Soc. 120 (1998) 4536.
[11] This value of dihedral angle reflects the degree of displacement
of carbonyl carbon (C3/C2%) from the plane formed by the other
dienolate carbons, while the mean dihedral angle between
C1ꢁC2ꢁC4/C1ꢁC3%ꢁC4 and Pd1ꢁPd2ꢁCl1 core is 95°, near to
90°.
[12] (a) G.R. Desiraju, J. Chem. Soc. Chem. Commun. (1989) 179.
(b) G.R. Desiraju, Acc. Chem. Res. 29 (1996) 441.
.
.