Chemistry Letters Vol.32, No.3 (2003)
265
the Ag/Agþ couple at a scan rate of 50mV/s (condition; working
electrode: ITO glass electrode, counter electrode: Pt wire,
reference electrode: Ag/Agþ, solvent: CH2Cl2, electrolyte:
0.1 mol dmꢁ3 TBAPF6). Poly(1) is highly crosslinked owing to
the presence of the six unsubstituted sites on the terminal
thiophenes that are active toward polymerization. Figure 1 shows
a polymerization trace of 1. The cycling of the electrode
potentials results in the increase of electroactivity, indicating
that insoluble polymer deposition on the electrode surface.
Figure 1 (dashed line) shows the CV of the polymer film
deposited on ITO glass electrode in TBAPF6-CH2Cl2 in the
absence of monomer 1. Three characteristic redox waves (0.34,
0.79, and 1.20 V) were observed, which are attributed to
cerium(III) triple decker porphyrin. These results demonstrate
that the polymer film deposited on ITO glass electrode is
comprised of cerium(III) triple decker porphyrins and has unique
multiple redox potentials.
electrode utilizing electro-oxidative polymerization of dithienyl
substituents in 1. Further investigation into the redox or
photophysical properties of the polymers will lead to more
interesting applications.
References and Notes
1
2
3
a) M. O. Wolf, Adv. Mater., 13, 545 (2001). b) M. O. Wolf and Y. Zhu,
Adv. Mater., 12, 599 (2000). c) R. P. Kingsborough and T. M. Swager,
Prog. Inorg. Chem., 48, 123 (1999). d) A. Deronzier and J. C. Moutet,
Coord. Chem. Rev., 147, 339 (1996)
a) ‘‘Handbook of Conducting Polymers,’’ ed. by T. A. Skotheim, R. L.
Elsenbaumer, and J. R. Reynolds, Marcel Dekker, New York (1998). b)
R. D. McCullough, Adv. Mater., 10, 93 (1998). c) J. Roncali, Chem. Rev.,
92, 711 (1992).
a) H. Segawa, N. Nakayama, and T. Shimidzu, J. Chem. Soc., Chem.
Commun., 1992, 784. b) H. Segawa, F. P. Wu, N. Nakayama, H.
Maruyama, S. Sagisaka, N. Higuchi, M. Fujitsuka, and T. Symidzu,
Synth. Met., 71, 2151 (1995). c) T. Shimidzu, Synth. Met., 81, 235 (1996).
d) T. Shimidzu, H. Segawa, F. Wu, and N. Nakayama, J. Photochem.
Photobiol., A, 92, 121 (1995).
4
5
a) R. P. Kingsborough and T. M. Swager, Adv. Mater., 10, 1100 (1998).
b) R. P. Kingsborough and T. M. Swager, J. Am. Chem. Soc., 121, 8825
(1999).
a) T. Muto, T. Temma, M. Kimura, K. Hanabusa, and H. Shirai, Chem.
Commun., 2000, 1649. b) T. Muto, T. Temma, M. Kimura, K. Hanabusa,
and H. Shirai, J. Org. Chem., 66, 6109 (2001). c) R. P. Kingsborough and
T. M. Swager, Angew. Chem., Int. Ed., 39, 2897 (2000).
6
7
M. Ikeda, A. Sugasaki, Y. Kubo, K. Sugiyasu, M. Takeuchi, and S.
Shinkai, Chem. Lett., 2001, 1266.
a) S. Shinkai, M. Ikeda, A. Sugasaki, and M. Takeuchi, Acc. Chem. Res.,
34, 494 (2001). b) M. Takeuchi, M. Ikeda, A. Sugasaki, and S. Shinkai,
Acc. Chem. Res., 34, 865 (2001). c) M. Takeuchi, T. Imada, and S.
Shinkai, Angew. Chem., Int. Ed. Engl., 37, 2096 (1998). d) M. Takeuchi,
T. Imada, and S. Shinkai, Tetrahedron Lett., 39, 7897 (1998). e) M.
Ikeda, M. Takeuchi, A. Sugasaki, A. Robertson, T. Imada, and S.
Shinkai, Supramol. Chem., 12, 321 (2000). f) M. Ikeda, T. Tanida, M.
Takeuchi, and S. Shinkai, Org. Lett., 2, 1803 (2000). g) A. Sugasaki, M.
Ikeda, M. Takeuchi, and S. Shinkai, Angew. Chem., Int. Ed. Engl., 39,
3839 (2000). h) A. Sugasaki, K. Sugiyasu, M. Ikeda, M. Takeuchi, and S.
Shinkai, J. Am. Chem. Soc., 123, 10239 (2001). i) M. Ikeda, M. Takeuchi,
S. Shinkai, F. Tani, Y. Naruta, S. Sakamoto, and K. Yamaguchi, Chem.—
Eur. J., 8, 5541 (2002).
Figure 1. Cyclic voltammogram of 1 at the ITO electrode in
0.1 mol dmꢁ3 TBAPF6/CH2Cl2 solutions at a scan rate of 50mV/s
(plain line, the electroactivity of 1 increases during 15 cycles) and
cyclic voltammogram of poly(1) (dashed line).
The absorption spectrum was measured for poly(1) film
deposited on the ITO electrode (Figure 2). A sharp Soret band
(409.0nm) accompanied by a broad Q band (587.0nm), which is
characteristic for cerium (III) triple decker porphyrin, were
observed.8;11 These spectral data firmly established that the
polymer film of cerium(III) triple decker porphyrin (poly(1)) on
ITO glass electrode has been obtained by the oxidative electro-
polymerization without decomposition.
8
9
a) J. W. Buchler, A. De Cian, J. Fischer, M. Kihn-Botulinski, H. Paulus,
and R. Weiss, J. Am. Chem. Soc., 108, 3652 (1986). b) D. K. P. Ng and J.
Jiang, Chem. Soc. Rev., 26, 433 (1997). c) J. W. Buchler and D. K. P. Ng,
in ‘‘The Porphyrin Handbook,’’ ed. by K. M. Kadish, K. M. Smith, and R.
Guilard, Academic Press, San Diego (2000), Vol. 3, Chap. 20 and
references cited therein.
Photo- and redox-driven ligand rotational activities of cerium(IV)
double decker porphyrin complexes have been investigated by Aida et
al.; a) K. Tashiro, K. Konishi, and T. Aida, Angew. Chem., Int. Ed. Engl.,
36, 856 (1997). b) K. Tashiro, T. Fujiwara, K. Konishi, and T. Aida,
Chem. Commun., 1998, 1121. c) K. Tashiro, K. Konishi, and T. Aida, J.
Am. Chem. Soc., 122, 7921 (2000).
In conclusion, wehave demonstrated a new synthetic strategy
for constructing a polymer film of cerium(III) triple decker
porphyrin, which has multiple redox potentials, on the ITO
10a) T. Gross, F. Chevalier, and J. S. Lindsey, Inorg. Chem., 40, 4762
(2001). b) D. Gryko, J. Li, J. R. Diers, K. M. Roth, D. F. Bocian, W. G.
Kuhr, and J. S. Lindsey, J. Mater. Chem., 11, 1162 (2001). c) T. F.
´
Magnera, L. M. Peslherbe, E. Korblova, and J. Michl, J. Organomet.
¨
Chem., 548, 83 (1997).
11 H. Miwa, N. Kobayashi, K. Ban, and K. Ohta, Bull. Chem. Soc. Jpn., 72,
2719 (1999).
12 a) F. Wurthner, M. S. Vollmer, F. Effenberger, P. Emele, D. U. Meyer, H.
¨
Port, and H. C. Wolf, J. Am. Chem. Soc., 117, 8090 (1995). b) M. S.
Vollmer, F. Wurthner, F. Effenberger, P. Emele, D. U. Meyer, T.
¨
¨
Stumpfig, H. Port, and H. C. Wolf, Chem.—Eur. J., 4, 260(1998).
13 Q. M. Wang and D. W. Bruce, Synlett., 1995, 1267.
14 1: Mp; 144.2–148.6 ꢂC, GPC (TSKgel G3000H-TSKgel G4000H,
CHCl3, 0.50 mL/min, monitored at 400 nm) retention time 34.7 min,
MALDI TOF MS (CHCA) m=z 3198.58 ([M+H]þ = 3198.12), FAB MS
m=z 3198.12 ([M+H]þ = 3198.1167), UV-vis (CH2Cl2): lmax (log ")
334.0 (4.80), 405.0 (5.48), 548.0 (0.91), 594.0 (0.91), Calcd. for
Ce2C180H204N12S12Á0.5CHCl3: C, 66.49; H, 6.33; N, 5.16%; Found: C,
66.61; H, 6.63; N, 4.83%.
Figure 2. The absorption spectrum of poly(1) film deposited on the
ITO electrode.