4
Tetrahedron
2014, 136, 3362–3365. (e) Wu, H.; Haeffner, F.; Hoveyda, A. H.
J. Am. Chem. Soc. 2014, 136, 3780–3783.
alkynyl imines. Products involving two different types of
nucleophilic entities, which can be similarly synthesized in a
straightforward manner, lead to the formation of relatively
complex products that contain vicinal C–N or vicinal C–N and
C–O bonds and are formed with high diastereo- and
enantioselectivity. In cases where the nucleophilic component
does not contain a methyl unit, exceptional selectivity is
observed (>98:2 /), whereas in reactions with 5-methyl-
siloxyfuran, which generate an O-substituted quaternary carbon
stereogenic center, site selectivity is lower. Nonetheless, pure -
addition products can be easily obtained by simple purification
procedures in the latter cases.
3. (a) Degrado, S. J.; Mizutani, H.; Hoveyda, A. H. J. Am. Chem.
Soc. 2001, 123, 755–756. (b) Luchaco-Cullis, C. A.; Hoveyda, A.
H. J. Am. Chem. Soc. 2002, 124, 8192–8193. (c) Hird, A. W.;
Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42, 1276–1279. (d)
Wu, J.; Mampreian, D. M.; Hoveyda, A. H. J. Am. Chem. Soc.
2005, 127, 4584–4585. (e) Kacprzynski, M. A.; Kazane, S. A.;
May, T. L.; Hoveyda, A. H. Org. Lett. 2007, 9, 3187–3190. (f)
Brown, M. K.; Hoveyda, A. H. J. Am. Chem. Soc. 2008, 130,
12904–12906.
4. For enantioselective Mannich-type reactions promoted by the
present set of Ag-based chiral phosphine complexes, see: (a)
Josephsohn, N. S.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem.
Soc. 2003, 125, 4018–4019. (b) Josephsohn, N. S.; Snapper, M.
L.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 3734–3735. (c)
Josephsohn, N. S.; Carswell, E. L.; Snapper, M. L.; Hoveyda, A.
H. Org. Lett. 2005, 7, 2711–2713.
5. For reviews on enantioselective reactions promoted by Ag-based
complexes, see: (a) Naodovic, M.; Yamamoto, H. Chem. Rev.
2008, 108, 3132–3148. (b) Yanagisawa, A.; Arai, T. Chem.
Commun. 2008, 1165–1172.
6. (a) Carswell, E. L.; Snapper, M. L.; Hoveyda, A. H. Angew.
Chem., Int. Ed. 2006, 45, 7230–7233. (b) Mandai, H.; Mandai, K.;
Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2008, 130,
17961–17969. For related studies, see: (c) Martin, S. F.; Lopez, O.
D. Tetrahedron Lett. 1999, 40, 8949–8953. (d) Akiyama, T.;
Honma, Y.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2008, 350,
399–402. (e) Yamaguchi, A.; Matsunaga, S.; Shibasaki, M. Org.
Lett. 2008, 10, 2319–2322. (f) González, A. S.; Arrayás, R. G.;
Rivero, M. R.; Carretero, J. C. Org. Lett. 2008, 10, 4335–4337. (g)
Yuan, Z.-L.; Jiang, J.-J.; Shi, M. Tetrahedron 2009, 65, 6001–
6007. (h) Deng, H.-P.; Wei, Y.; Shi, M. Adv. Synth. Catal. 2009,
351, 2897–2902. (i) Hayashi, M.; Sano, M.; Funahashi, Y.;
Nakamura, S. Angew. Chem., Int. Ed. 2013, 52, 5557–5560.
7. Wieland, L. C.; Vieira, E. M.; Snapper, M. L.; Hoveyda, A. H. J.
Am. Chem. Soc. 2009, 131, 570–576.
8. For reviews on stereoselective vinylogous Mannich additions, see:
(a) Bur, S. K.; Martin, S. F. Tetrahedron 2001, 57, 3221–3242. (b)
Martin, S. F. Acct. Chem. Res. 2002, 35, 895–904. (c) Casarighi,
G.; Battistini, L.; Curti, C.; Rassu, G.; Zanardi, F. Chem. Rev.
2011, 111, 3076–3154.
9. For related transformations promoted by Ni-based complexes, see:
Shepherd, N. E.; Tanabe, H.; Xu, Y.; Matsunaga, S.; Shibasaki,
M. J. Am. Chem. Soc. 2010, 132, 3666–3667.
10. Barnes, D. M.; Bhagavatula, L.; DeMattei, J.; Gupta, A.; Hill, D.
R.; Manna, S.; McLaughlin, M. A.; Nichols, P.; Premchandran,
R.; Rasmussen, M. W.; Tian, Z.; Wittenberger, S. J. Tetrahedron:
Asymmetry 2003, 14, 3541–3551.
11. The siloxypyrrole can be prepared in four steps and ~50% overall
yield. See the Supporting Information for details.
aSee the Supporting Information for experimental and analytical details.
Studies aimed at the development of additional catalysts and
further methods for efficient and selective additions of different
types of nucleophilic entities to various imine substrates are in
progress and will be reported in due course.
12. See the Supporting Information for all experimental and analytic
details.
13. After completion of the present studies but prior to preparation of
this manuscript, the present catalytic system was employed by
Zanardi and co-workers to promote EVM reactions with
siloxypyrrole 3. These workers report that with alkyl-substituted
aldimines, o-thiomethyl,p-methoxyphenylimines (cf. 2a) are most
suitable, whereas, in contrast to the present studies, o-
anisidylimines are best for aryl imines. See: (a) Curti, C.;
Battistini, L.; Ranieri, B.; Pelosi, G.; Rassu, G.; Casiraghi, G.;
Zanardi, F. J. Org. Chem. 2011, 76, 2248–2252. (b) Ranieri, B.;
Curti, C.; Battistini, L.; Sartori, A.; Pinna, L.; Casiraghi, G.;
Zanardi, F. J. Org. Chem. 2011, 76, 10291–10298.
Acknowledgments
Financial support was provided by the National Institutes of
Health (GM-57212). We are grateful to Dr. Hiroki Mandai, Ms.
Kyoko Mandai and Mr. Ming-Joo Koh for helpful discussions
and assistance.
References and notes
14. 5-Methyl-siloxyfuran can be prepared in ~65% overall yield from
readily accessible starting materials. See the Supporting
Information for details.
15. Zhou, L.; Lin, L.; Ji, J.; Xie, M.; Liu, X.; Feng, X. Org. Lett. 2011,
13, 3056–3059.
16. Usually, the optimal proton source in these phosphine–Ag-
catalyzed reactions is i-PrOH (see ref 4a–b and ref 7). The reason
for use of MeOH in the transformations depicted in Schemes 2–4
is that slightly higher er values for obtained (e.g., 4a was obtained
in 88:12 and 82:18 er with MeOH and i-PrOH, respectively with
the unoptimal o-anisidylimine substrate).
1. For recent reviews on enantioselective synthesis of
enantiomerically enriched amines, see: (a) Kobayashi, S.; Mori,
Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626–2704.
(b) Chiral Amine Synthesis; Nugent, T. C., Ed.; Wiley–VCH:
Weinheim, Germany, 2010.
2. For examples involving other catalyst systems, see: (a) Vieira, E.
M.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133,
3332–3335. (b) Vieira, E. M.; Haeffner, F.; Snapper, M. L.;
Hoveyda, A. H. Angew. Chem., Int. Ed. 2012, 51, 6618–6621. (c)
Silverio, D. L.; Torker, S.; Pilyugina, T. Vieira, E. M.; Snapper,
M. L.; Haeffner, F.; Hoveyda, A. H. Nature 2013, 494, 216–221.
(d) Mszar, N. W.; Haeffner, F.; Hoveyda, A. H. J. Am. Chem. Soc.