Electron Transfer Reactions of Phenylthiyl Radicals
J. Phys. Chem., Vol. 100, No. 23, 1996 9899
C6H5O•/C6H5O- than for C6H5S•/C6H5S-. The trend toward
smaller λ for all of the S systems in Table 4 suggests that the
effects of stronger localization of the electron on the S atoms
also cause the differences in the structural changes in para-
substituted p-XC6H4S•/p-XC6H4SCS- pairs to be lower than in
the p-XC6H4O•/p-XC6H4O- pairs. Based on the fact that there
is less interaction of the unpaired spin with the ring π system
in p-SC6H4S•- as well as in C6H5S•, this conclusion is
reasonable.14,15
The second trend in Table 4 is the major increase in λse or
decrease in kse on going from H to H2N and O- para
substituents. Here it is possible that, as well as changes in λi,
there may be alterations in the geometries of the activated
complexes that alter Aσ2 and/or λo and contribute to the
decreases in kse. At present, unfortunately, only evidence
relating to reasons for increases in λi is available. In the case
of the p-OC6H4O•-/p-OC6H4O2- pair there will again be changes
in the ring carbon structure on electron transfer. Also the C-O
bonds, which remain equivalent, change from bond order 1 in
p-OC6H4O2- to 1.5 in p-OC6H4O•-.42 This simultaneous change
in two C-O bonds will make a large contribution to λi, probably
accounting for a major part of the increase over the value of
λse for C6H5O•/C6H5O-.
A contribution to an increase in λse for the amino-substituted
radicals is again found in the structures of the radicals. ESR
and Raman spectroscopic studies show that the electronic
structure of p-aminophenoxyl radical is closely related to that
p-benzosemiquinone radical anion.35-37 The Raman data
indicate that the CN and CO bonds are of nearly equal strength
and bond order.36,37 The change in bond length at the H2N para
substituent on electron transfer will contribute to λi. The fact
that the increase in λse for p-H2NC6H4O•/p-H2NC6H4O- is much
less than that for p-OC6H4O•-/p-OC6H4O2- is, however, an
indication that the effects of reorganization are not as strong in
the former case.
(14) Armstrong, D. A.; Sun, Q.; Tripathi, G. N. R.; Schuler, R. H.;
McKinnon, D. J. Phys. Chem. 1993, 97, 5611.
(15) Tripathi, G. N. R.; Chipman, D. M.; Schuler, R. H.; Armstrong,
D. A. J. Phys. Chem. 1995, 99, 5264.
(16) Adams, G. E.; McNaughton, G. S.; Michael, B. D. Trans. Faraday
Soc. 1968, 64, 902. Akhlaq, M. S.; Schuchmann, H.-D.; von Sonntag, C.
Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 1987, 51, 91.
(17) Draganic´, I. G.; Draganic´, Z. D. The Radiation Chemistry of Water,
Academic Press, New York, 1971.
(18) Asmus, K.-D. Sulfur-Centered Species. In Sulfur-Centered ReactiVe
Intermediates in Chemistry and Biology; Chatgilialoglu, C., Asmus, K.-D.,
Eds.; NATO ASI Series; Plenum Press: New York, 1990; p 155.
(19) Jovanovic, S. V.; Steenken, S.; Simic, M. C. J. Phys. Chem. 1990,
94, 3583.
(20) Serjeant, E. P.; Dempsey, B. In Ionization Constants of Organic
Acids in Aqueous Solution; IUPAC Chemical Data Series 23; Pergamon
Press: Oxford, 1979.
(21) Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265.
Wilkins, R. G. Kinetics and Mechanism of Reaction Complexes of Transition
Metal Complexes, 2nd ed.; VCH: New York, 1991.
(22) Balzaani, V.; Scandola, F.; Orlandi, G.; Sabbatini, N.; Indelli, M.
T. J. Am. Chem. Soc. 1981, 103, 3370. Bock, C. R.; Connor, J. A.;
Gutierrez, A. R.; Meyer, T. J.; Whitten, D. G.; Sullivan, B. P.; Nagle, J. K.
J. Am. Chem. Soc. 1979, 101, 4815.
(23) Brown, G. M.; Sutin, N. J. Am. Chem. Soc. 1979, 101, 883.
(24) Daniels, F.; Alberty, R. A. Physical Chemistry, 4th ed.; Wiley: New
York, 1975; p 334.
(25) Fernandez, L. P.; Hepler, L. G. J. Am. Chem. Soc. 1959, 81, 1783.
De Maria, P.; Fini, A.; Hall, E. M. J. Chem. Soc., Perkin Trans. 2 1977,
149; 1973, 1969.
(26) Perrin, D. D.; Dempsey, B.; Serjeant, E. R. pKa Prediction for
Organic Acids and Bases; Chapman and Hall: New York, 1981.
(27) Surdhar, P. S.; Armstrong, D. A. J. Phys. Chem. 1986, 90, 5919;
J. Phys. Chem. 1987, 91, 6532.
(28) Merenyi, G.; Lind, J.; Engman, L. J. Chem. Soc., Perkin Trans. 2
1994, 2551.
(29) The stabilization energies of p-XC6H4Y•- species will be somewhat
over estimated, since in general ∆G°(soln) for a doubly charged anion is less
than 2∆G°
for a singly charged one and the solution contribution in
process (i) will be slightly less than that in (ii).
(soln)
p-XC6H4Y•- + e- ) p-XC6H4Y2-
C6H5Y• + e- ) C6H5Y-
(i)
Unlike the H2N and O- substituents, the p-Br substituents
would oppose delocalization of the unpaired electron of the
radical onto the aromatic ring, and thus tend to maintain single
bond character in the C-O and C-S bonds. While the
differences are smaller, the fact that kse tends to increase in
going from the H or Me to Br as the para substituents (see Table
4) is in agreement with this.
(ii)
However, the relative energies of the p-OC6H4O•-/p-OC6H4Y2-, p-OC6H4S•-
/
p-OC6H4S2-, and p-SC6H4S•-/p-SC6H4S2- couples would not be affected
by this, and the relative values are valid.
(30) Hansch, C.; Leo, A.; Taft, R. W. Chem. ReV. 1991, 91, 165.
(31) Venimadhavan, S.; Amarnath, K.; Harvey, N. G.; Cheng, J.-P.;
Arnett, E. M. J. Am. Chem. Soc. 1992, 114, 221.
(32) Bordwell, F. G.; Zhang, X.-M.; Satish, A. V.; Cheng, J.-R. J. Am.
Chem. Soc. 1994, 116, 6605.
(33) Andrieux, C. P.; Hapoit, P.; Pinson, J.; Saveant, J.-M. J. Am. Chem.
Soc. 1994, 116, 6605.
(34) Jonsson, M.; Lind, J.; Eriksen, I. E.; Merenyi, G. J. Am. Chem.
Acknowledgment. The authors wish to thank Drs. G. N. R.
Tripathi, D. M. Chipman, and R. W. Fessenden for helpful
discussions on the matter of this paper.
Soc. 1994, 116, 1423.
References and Notes
(35) Neta, P.; Fessenden, R. W. J. Phys. Chem. 1974, 78, 523.
(36) Tripathi, G. N. R.; Schuler, R. H. J. Phys. Chem. 1984, 88, 1706.
(37) Tripathi, G. N. R.; Schuler, R. H. J. Chem. Soc., Faraday Trans.
1993, 89, 4177.
(38) Meisel, D.; Fessenden, R. W. J. Am. Chem. Soc. 1976, 98, 7505.
(39) Grampp, G.; Jaenicke, W. Ber. Bunsen-Ges. Phys. Chem. 1984,
88, 325, and previous papers referenced therein.
(1) The research described herein was supported by the Office of Basic
Energy Sciences of the U.S. Department of Energy and by NSERC of
Canada Grant OGPOO03571. This is Contribution No. NDRL-3897 from
the Notre Dame Radiation Laboratory.
(2) Schuler, R. H.; Neta, P.; Zemel, H.; Fessenden, R. W. J. Am. Chem.
Soc. 1976, 98, 3825.
(3) Tripathi, G. N. R.; Schuler, R. H. J. Phys. Chem. 1988, 92, 5129.
(4) Chipman, D. M.; Liu, R.; Zhuo, X.; Pulay, P. J. Chem. Phys. 1994,
100, 5023 and references cited therein.
(5) Steenken, S.; Neta, P. J. Phys. Chem. 1979, 83, 1134.
(6) Steenken, S.; Neta, P. J. Phys. Chem. 1982, 86, 3661.
(7) Ilan, Y. A.; Czapski, G.; Meisel, D. Biochim. Biophys. Acta 1976,
430, 209.
(8) Lind, J.; Shen, X.; Eriksen, I. E.; Merenyi, G. J. Am. Chem. Soc.
1990, 112, 479.
(9) Jovanovic, S. V.; Tosic, M.; Simic, M. G. J. Phys. Chem. 1991,
95, 10824.
(10) Tripathi, G. N. R.; Sun, Q.; Armstrong, D. A.; Chipman, D. M.;
Schuler, R. H. J. Phys. Chem. 1992, 96, 5344.
(11) Schuler, R. H.; Patterson, L. K.; Janata, E. J. Phys. Chem. 1980,
84, 2088.
(12) Alfassi, Z. B.; Schuler, R. H. J. Phys. Chem. 1985, 89, 3359.
(13) ORIGIN; MicroCal Software, Inc.: Northampton, MA.
(40) Grampp and Jaenicke39 have carried out studies of self-exchange
reactions of the p-phenylenediamines in several nonaqueous solvents. If
one assumes the same dimensions of the activated complex and reactants
in water, the value of λo for p-H2NC6H4NH2•+/p-H2NC6H4NH2 is found to
be ∼50 kJ mol-1 (λo in acetonitrile is 43 kJ mol-1). The value of λi is 21
kJ mol-1, and therefore λse for p-H2NC6H4NH2•+/p-H2NC6H4NH2 in water
would be ∼70 kJ mol-1. If the reactant and activated complex dimensions
for the present systems are similar, then from the λse’s in Table IV the
values of λi for the self-exchanges of the H and Me substituents would be
∼10 kJ mol-1 for the phenoxyl species and about half that for the phenylthiyl
species, respectively.
(41) McGlashen, M. L.; Eads, D. D.; Spiro, T. G.; Whittaker, J. W. J.
Phys. Chem. 1995, 99, 4918.
(42) Rossetti, R.; Beck, S. M.; Brus, L. E. J. Phys. Chem. 1983, 87,
3058. Schuler, R. H.; Tripathi, G. N. R.; Prebenda, M. F.; Chipman, D.
M. J. Phys. Chem. 1983, 87, 3101.
JP960165N