I. Devi et al. / Tetrahedron Letters 45 (2004) 2405–2408
2407
O
O
O
Y
O
OH
H
O
NPh
O
Me
O
Me
O
Me
O
CHO
N
N
-H2O
or
N
O
NPh
3 or 7
X
N
N
MW
N
Y
-(H
2O+H2)
O
Me
Me
[A]
Me
1, Y=O
6, Y=NH
1, X=OH
6, X=NH2
(Utilising 1) Y=O
or
(Utilising 6) Y=NH
Scheme 2.
A.; Kumar, R. Ind. J. Chem. 1990, 29(B), 1141–1142; (e)
Ahluwalia, V. K.; Sharma, H. R.; Tyagi, R. Tetrahedron
1986, 42, 4045–4048; (f) Ahluwalia, V. K.; Aggarwal, R.;
Alauddin, M.; Gill, G.; Khanduri, C. H. Heterocycle 1990,
31, 129–137; (g) Broom, A. D.; Shim, J. L.; Anderson, C.
L. J. Org. Chem. 1976, 411, 1095–1099; (h) Wamhoff, H.;
Muhr, J. Synthesis 1988, 9–922; (i) Hirota, K.; Kuki, H.;
Maki, Y. Heterocycles 1994, 37, 563–570; (j) Srivastava,
P.; Saxena, A. S.; Ram, V. J. Synthesis 2000, 541–544.
assisted solid state synthesis of a number of annelated
uracils of biological significance in excellent yields.
Furthermore, the results delineated above have dem-
onstrated that microwave-assisted reactions in the solid
state can replace classical methods, allowing easy and
rapid access to novel heterocycles of biological signifi-
cance and reducing the reaction times from hours to
minutes with improved yields.
15. Walsh, E. B.; Wamhoff, H. Chem. Ber. 1989, 122, 1673–1679.
16. (a) Bhuyan, P. J.; Borah, H. N.; Sandhu, J. S. Tetrahedron
Lett. 2002, 43, 895–897; (b) Bhuyan, P. J.; Borah, H. N.;
Boruah, R. C. Tetrahedron Lett. 2003, 44, 1847–1849; (c)
Devi, I.; Kumar, B. S. D.; Bhuyan, P. J. Tetrahedron Lett.
2003, 44, 8307–8310.
References and notes
1. Tanaka, T.; Toda, F. Chem. Rev. 2000, 100, 1025–1074.
2. (a) Pourashraf, M.; Delair, P.; Rasmaissen, M. O.;
Greene, A. E. J. Org. Chem. 2000, 65, 6966–6972; (b)
Cossy, J.; Willis, C.; Bellosta, V.; Jalmes, L. S. Synthesis
2002, 951–957.
3. Eckstein, E.; Urbanski, T. In Adv. Heterocycl. Chem.;
Katritzky, A. R., Boulton, A. J., Eds.; Academic: London,
1978; Vol. 23, pp 1–53.
17. Senda, S.; Hirota, K.; Yang, G. N.; Shirahashi, M.
Yakugaku Zasshi 1971, 91, 1372–1376; Chem. Abstr. 1972,
76, 126915q.
18. Hirota, K.; Kitade, Y.; Sajiki, H.; Maki, Y. Synthesis
1984, 589–590; Bredereck, H.; Simchen, G.; Wahl, R.;
Effenberger, F. Chem. Ber. 1968, 101, 512–521.
19. In a typical experimental procedure, equimolar amounts
(0.184 g,
of N,N-dimethyl-5-formylbarbituric acid
1
4. Pederson, O. S.; Pederson, E. B. Synthesis 2000, 479–495,
and references cited therein.
5. Magnus, M. A.; Confalone, F. N.; Storace, L. Tetrahedron
Lett. 2000, 41, 3015–3019.
1 mmol), and N-phenylmaleimide 2 (0.173 g, 1 mmol),
were added to the reaction vessel of the microwave reactor
(Synthewave 402 Monomode Reactor from Prolabo) and
allowed to react under microwave irradiation at 80%
(480W) power and 120 °C for 5 min. The automatic mode
stirrer helps in mixing and the uniform heating of the
reactants. The reaction vessel was cooled to room
temperature and the solid compound obtained was crys-
tallized from ethanol to give a product 3 (0.306 g, 90%).
The structure was confirmed from spectroscopic data
and elemental analysis. Mp 229 °C 1H NMR (300 MHz
CDCl3) d 3.05 (s, 3H), 3.15 (s, 3H), 3.60 (s, 1H), 7.00–7.15
(m, 5H), 8.30 (s, 1H). IR 1720, 1710, 1695, 1610 cmꢀ1. MS
339 Mþ. CHN analysis (calcd %) C, 60.17; H, 3.83; N,
12.39; C17H13N3O5 (found %) C, 60.10; H, 3.90; N, 12.35.
Similarly, the other reactions have been carried out and
the products have been characterized (Table 1).
6. Jarvest, R. L.; Fiuto, J. L.; Ashman, S. M.; Dabrowski,
C. E.; Fernandez, A. V.; Jennings, L. J.; Lavery, P.; Tew,
D. G. Bioorg. Med. Chem. Lett. 1999, 2, 443–448.
7. (a) Teshima, T.; Griffin, J. C.; Powers, J. C. J. Biol. Chem.
1982, 257, 5085–5091; (b) Takita, T.; Uniezawa, H.; Kato,
K.; Niitsuma, S. Tetrahedron Lett. 1985, 36, 5785–5786;
(c) Cho, S. D.; Park, Y. D.; Kim, J. J.; Lee, S. G.; Ma, C.;
Song, S. Y.; Joo, W. H.; Falck, J. R.; Shiro, M.; Shin,
D. S.; Yoon, Y. J. J. Org. Chem. 2003, 68, 7918–7920.
8. Coates, W. J. Eur. Pat. 351058, 1990; Chem. Abstr. 1990,
113, 40711.
9. Kitamura, N., Onishi, A. Eur. Pat. 163599, 1984; Chem.
Abstr. 1984, 104, 186439.
1
10. (a) Furuya, S.; Ohtaki, T. Eur. Pat. Appl. EP 608565,
1994; Chem. Abstr. 1994, 121, 205395; (b) Heber, D.;
Heers, C.; Ravens, U. Pharmazie 1993, 48, 537–541.
11. Davoll, J.; Clarke, J.; Elslager, E. F. J. Med. Chem. 1972,
15, 837–838.
12. (a) Kretzschmer, E. Pharmazie 1980, 35, 253–257; (b)
Senda, S.; Izumi, H. Yakugaku Zasshi 1969, 89, 266–271.
13. Ahluwalia, V. K.; Batla, R.; Khurana, A.; Kumar, R. Ind.
J. Chem. 1990, 29(B), 1141–1142.
14. (a) Cheng, T.; Wang, Y.; Cai, M. Youji Huaxue 1988, 8,
250–253; (b) Spada, M. R.; Klein, R. S.; Otter, B. A. J.
Heterocycl. Chem. 1989, 26, 1851–1857; (c) Ahluwalia, V.
K.; Kumar, R.; Khurana, K.; Batla, R. Tetrahedron 1990,
46, 3953–3962; (d) Ahluwalia, V. K.; Batla, R.; Khurana,
5a. Mp 181–82 °C H NMR (300 MHz, CDCl3) d 3.00 (s,
3H), 3.10 (s, 3H), 6.65 (s, 1Hþ), 7.00–7.20 (m, 5H). IR 3400,
1710, 1695 cmꢀ1. MS 30 3 M . CHN analysis (calcd %) C,
55.44; H, 4.29; N, 13.86; C14H13N3O5 (found %) C, 55.40;
H, 4.25; N, 13.80. 5b. Mp 228–230 °C 1H NMR (300 MHz,
CDCl3) d 3.00(s, 3H), 3.10(s, 3H), 6.50(s, 1H), 6.95–7.15
(m, 5H). IR 3435, 1710, 1695 cmꢀ1. MS 319 Mþ. CHN
analysis (calcd %) C, 52.66; H, 4.07; N, 13.16;
C14H13N3O4S (found %) C, 52.60; H, 4.00; N, 13.10.
1
7. Mp 266 °C H NMR (300 MHz, CDCl3) d 3.00 (s, 3H),
3.15 (s, 3H), 6.95–7.15 (m, 5H), 8.25 (s, 1H). IR 1715,
1700, 1695, 1610 cmꢀ1. MS 336 Mþ. CHN analysis (calcd
%) C, 60.71; H, 3.57; N, 16.66; C17H12N4O4 (found %) C,
60.65; H, 3.50; N, 16.65.